Tracking the evolution of antibiotic resistance

Feb 01, 2013

With the discovery of antibiotics, medicine acquired power on a scale never before possible to protect health, save lives, and reduce suffering caused by certain bacteria. But the power of antibiotics is now under siege because some virulent infections no longer respond to antibiotic drugs.

This antibiotic resistance is an urgent that a team of researchers from Sabanci University in Istanbul, Turkey, and Harvard Medical School and Harvard University in Cambridge, Mass., aim to stop. Their approach is based on an automated device they created that yields a new understanding of how antibiotic resistance evolves at the . The team will present its work at the 57th Annual Meeting of the Biophysical Society (BPS), held Feb. 2-6, 2013, in Philadelphia, Pa.

Called the "morbidostat," the device grows bacteria in various concentrations of antibiotic. This enabled researchers to identify the concentrations at which the antibiotics stopped working and the bacteria became resistant to therapy. Next, they targeted key genes involved in creating the drug-resistant states. Their approach documented real-time changes in genes that gave bacteria an advantage in evolving to "outwit" antibiotics.

Knowledge at the gene level can be applied to the molecular design of the next generation of bacteria-killing antibiotics.

"Morbidostat is designed to evolve bacteria in conditions comparable with clinical settings," explains Erdal Toprak of Sabanci University. "Combined with next generation genome , it is possible to follow the evolution of resistance in real time and identify resistance-conferring genetic changes that accumulate in the ."

Data show an unusual survival profile of the common bacteria they used, Escherichia coli. "We identified striking features in the evolution of resistance to the antibiotic trimethoprim," Toprak says. It was these unusual features that helped them isolate the gene involved in conferring through multiple mutations.

The team's next steps will involve determining how this genetic information might one day be applied to drug design to develop new antibiotic therapies.

Explore further: Research helps identify memory molecules

More information: Presentation #3390-Pos, "Evolution of antibiotic resistance through a multi-peaked adaptive landscape," will take place at 10:30 a.m. on Wednesday, Feb. 6, 2013, in the Pennsylvania Convention Center, Hall C. ABSTRACT: tinyurl.com/bfcke65

add to favorites email to friend print save as pdf

Related Stories

Newly discovered reservoir of antibiotic resistance genes

Oct 21, 2011

Waters polluted by the ordure of pigs, poultry, or cattle represent a reservoir of antibiotic resistance genes, both known and potentially novel. These resistance genes can be spread among different bacterial species by bacteriophage, ...

Roads pave the way for the spread of superbugs

Sep 29, 2011

Antibiotic resistant E. coli was much more prevalent in villages situated along roads than in rural villages located away from roads, which suggests that roads play a major role in the spread or containment of antibiotic resist ...

The structure of resistance

Feb 22, 2008

A team of scientists from the University Paris Descartes has solved the structure of two proteins that allow bacteria to gain resistance to multiple types of antibiotics, according to a report in EMBO reports this month. ...

Resistant gut bacteria will not go away by themselves

Jun 19, 2007

E. coli bacteria that have developed resistance to antibiotics will probably still be around even if we stop using antibiotics, as these strains have the same good chance as other bacteria of continuing to colonise the gut, ...

Recommended for you

Research helps identify memory molecules

42 minutes ago

A newly discovered method of identifying the creation of proteins in the body could lead to new insights into how learning and memories are impaired in Alzheimer's disease.

Computer simulations visualize ion flux

1 hour ago

Ion channels are involved in many physiological and pathophysiological processes throughout the human body. A young team of researchers led by pharmacologist Anna Stary-Weinzinger from the Department of Pharmacology ...

Neutron diffraction sheds light on photosynthesis

1 hour ago

Scientists from ILL and CEA-Grenoble have improved our understanding of the way plants evolved to take advantage of sunlight. Using cold neutron diffraction, they analysed the structure of thylakoid lipids found in plant ...

DNA may have had humble beginnings as nutrient carrier

23 hours ago

New research intriguingly suggests that DNA, the genetic information carrier for humans and other complex life, might have had a rather humbler origin. In some microbes, a study shows, DNA pulls double duty ...

Central biobank for drug research

23 hours ago

For the development of new drugs it is crucial to work with stem cells, as these allow scientists to study the effects of new active pharmaceutical ingredients. But it has always been difficult to derive ...

User comments : 0