Tracking the evolution of antibiotic resistance

Feb 01, 2013

With the discovery of antibiotics, medicine acquired power on a scale never before possible to protect health, save lives, and reduce suffering caused by certain bacteria. But the power of antibiotics is now under siege because some virulent infections no longer respond to antibiotic drugs.

This antibiotic resistance is an urgent that a team of researchers from Sabanci University in Istanbul, Turkey, and Harvard Medical School and Harvard University in Cambridge, Mass., aim to stop. Their approach is based on an automated device they created that yields a new understanding of how antibiotic resistance evolves at the . The team will present its work at the 57th Annual Meeting of the Biophysical Society (BPS), held Feb. 2-6, 2013, in Philadelphia, Pa.

Called the "morbidostat," the device grows bacteria in various concentrations of antibiotic. This enabled researchers to identify the concentrations at which the antibiotics stopped working and the bacteria became resistant to therapy. Next, they targeted key genes involved in creating the drug-resistant states. Their approach documented real-time changes in genes that gave bacteria an advantage in evolving to "outwit" antibiotics.

Knowledge at the gene level can be applied to the molecular design of the next generation of bacteria-killing antibiotics.

"Morbidostat is designed to evolve bacteria in conditions comparable with clinical settings," explains Erdal Toprak of Sabanci University. "Combined with next generation genome , it is possible to follow the evolution of resistance in real time and identify resistance-conferring genetic changes that accumulate in the ."

Data show an unusual survival profile of the common bacteria they used, Escherichia coli. "We identified striking features in the evolution of resistance to the antibiotic trimethoprim," Toprak says. It was these unusual features that helped them isolate the gene involved in conferring through multiple mutations.

The team's next steps will involve determining how this genetic information might one day be applied to drug design to develop new antibiotic therapies.

Explore further: How steroid hormones enable plants to grow

More information: Presentation #3390-Pos, "Evolution of antibiotic resistance through a multi-peaked adaptive landscape," will take place at 10:30 a.m. on Wednesday, Feb. 6, 2013, in the Pennsylvania Convention Center, Hall C. ABSTRACT: tinyurl.com/bfcke65

add to favorites email to friend print save as pdf

Related Stories

Newly discovered reservoir of antibiotic resistance genes

Oct 21, 2011

Waters polluted by the ordure of pigs, poultry, or cattle represent a reservoir of antibiotic resistance genes, both known and potentially novel. These resistance genes can be spread among different bacterial species by bacteriophage, ...

Roads pave the way for the spread of superbugs

Sep 29, 2011

Antibiotic resistant E. coli was much more prevalent in villages situated along roads than in rural villages located away from roads, which suggests that roads play a major role in the spread or containment of antibiotic resist ...

The structure of resistance

Feb 22, 2008

A team of scientists from the University Paris Descartes has solved the structure of two proteins that allow bacteria to gain resistance to multiple types of antibiotics, according to a report in EMBO reports this month. ...

Resistant gut bacteria will not go away by themselves

Jun 19, 2007

E. coli bacteria that have developed resistance to antibiotics will probably still be around even if we stop using antibiotics, as these strains have the same good chance as other bacteria of continuing to colonise the gut, ...

Recommended for you

Researchers discover new strategy germs use to invade cells

14 hours ago

The hospital germ Pseudomonas aeruginosa wraps itself into the membrane of human cells: A team led by Dr. Thorsten Eierhoff and Junior Professor Dr. Winfried Römer from the Institute of Biology II, members of the Cluster ...

Progress in the fight against harmful fungi

14 hours ago

A group of researchers at the Max F. Perutz Laboratories has created one of the three world's largest gene libraries for the Candida glabrata yeast, which is harmful to humans. Molecular analysis of the Candida ...

How steroid hormones enable plants to grow

Aug 19, 2014

Plants can adapt extremely quickly to changes in their environment. Hormones, chemical messengers that are activated in direct response to light and temperature stimuli help them achieve this. Plant steroid ...

Surviving the attack of killer microbes

Aug 19, 2014

The ability to find food and avoid predation dictates whether most organisms live to spread their genes to the next generation or die trying. But for some species of microbe, a unique virus changes the rules ...

Histones and the mystery of cell proliferation

Aug 19, 2014

Before cells divide, they create so much genetic material that it must be wound onto spools before the two new cells can split apart. These spools are actually proteins called histones, and they must multiply ...

User comments : 0