Computed tomography provides real-time 3-D pictures showing how oil and water flow in porous rock

Feb 27, 2013
Large volume, single pore gets filled via only a single pore throat. Top: starting sequence, bottom: next sequence after 16.8 seconds.

For the first time, experiments using computed tomography have allowed scientists to observe in 3D the flow of oil and water in real rock on an unprecedented scale. The new approach trailed and the information gathered by the experiments contribute to an improved understanding of multiphase flow and transport in porous media. The research was performed by a joint team of scientists from Shell, the Paul Scherrer Institute in Switzerland and the Johannes Gutenberg University in Germany. The results have been published in the Proceedings of the National Academy of Sciences.

On a global scale production leaves approximately 50-70% of the oil behind. With this new insight into the fundamental processes the industry can develop new and safe methods to produce more oil from existing reservoirs. Oil and gas are typically trapped inside small pores in . Standard approaches for describing macroscopic behaviour of simultaneous flow of several immiscible fluids, such as oil and water have many shortcomings and do not contribute to our understanding of the processes on the level of single pores. The new experimental data provide a ground-breaking reference to validate pore-scale with individual pores at a spatial resolution of a few thousandths of millimetres. The experiments have been performed at the Swiss Light Source at the Paul Scherrer Institute and are based on a new fast (CT) technique for 3D visualisation of the processes as they happen. In these experiments small samples of the rock are illuminated from different directions with X-rays, and the images produced are combined to provide high resolution 3D images that can be put together to create a movie showing the processes.

Sarah Irvine, the supporting scientist at the Paul Scherrer Institute, who helped develop the fast tomography technique and execute the experiment, said: "In the past, full CT scans at this spatial resolution would have taken 20 minutes or longer. Using X-rays from the SLS with our fast tomography setup, we can acquire individual projection images in a few milliseconds or less. Typically over a thousand of these acquired over 180° of rotation are combined to reconstruct a full 3D data set with a total scan time of just a few seconds, or even faster".

Large volume, single pore gets filled via only a single pore throat. Top: starting sequence, bottom: next sequence after 16.8 seconds.

Michael Kersten of the Institute of Geosciences at Johannes Gutenberg University in Mainz, Germany, said: "This achievement is important to understand how a mixture of several fluids flows through pores of different sizes". The Mainz researchers contributed primarily to the data analysis and visualisation. Thanks to their software skills and experience gained over a decade of CT work, Kersten's group was able to reduce over 10 TB of high-resolution data down to minute-lasting movies of the key events. The results shed light onto characteristics of fluid-behaviour that up till now were only poorly understood. For the first time ever, the researchers were able to directly observe so-called Haines jumps, sudden changes in the way a fluid moves through porous media, in actual rock. The findings oppose the common paradigm that such changes are locally restricted to single pores. Instead, they cascade through dozens of pores simultaneously.

Steffen Berg, research institute member of Shell Global Solutions International B.V. at Rijswijk, The Netherlands, said: "This work has the potential to change how we look at the mechanisms in porous media and apply this improved understanding to solve some of the energy industry's greatest challenges. The new quantitative data helps to build and validate computer models used to describe the flow of fluids in porous rock. It enables us to ultimately predict macroscopic behaviour and to optimise enhanced recovery techniques accordingly".

Explore further: A 5.3-million-year record of sea level and temperature

More information: Berg, S. et al. Real-time 3D imaging of Haines jumps in porous media flow, Proceedings of the National Academy of Sciences.
Published online before print February 19, 2013, DOI: 10.1073/pnas.1221373110

add to favorites email to friend print save as pdf

Related Stories

Can we accurately model fluid flow in shale?

Jan 04, 2013

(Phys.org)—Given that over 20 trillion cubic meters of natural gas, a third of the United States' total reserves, are thought to be trapped in shale, and given the rush to exploit shale oil and gas resources ...

New research aims to improve natural gas production

Apr 27, 2011

Natural gas is an abundant energy resource for the United States, but much of it remains trapped in shale or tight-sand formations. Researchers at Missouri University of Science and Technology hope to develop ...

Recommended for you

Melting during cooling period

5 hours ago

(Phys.org) —A University of Maine research team says stratification of the North Atlantic Ocean contributed to summer warming and glacial melting in Scotland during the period recognized for abrupt cooling ...

Warm US West, cold East: A 4,000-year pattern

8 hours ago

Last winter's curvy jet stream pattern brought mild temperatures to western North America and harsh cold to the East. A University of Utah-led study shows that pattern became more pronounced 4,000 years ago, ...

New study outlines 'water world' theory of life's origins

10 hours ago

(Phys.org) —Life took root more than four billion years ago on our nascent Earth, a wetter and harsher place than now, bathed in sizzling ultraviolet rays. What started out as simple cells ultimately transformed ...

User comments : 0

More news stories

Melting during cooling period

(Phys.org) —A University of Maine research team says stratification of the North Atlantic Ocean contributed to summer warming and glacial melting in Scotland during the period recognized for abrupt cooling ...