Tiny tweezers and their big influence on bustling proteins: Scientists investigate molecular 'clothespins'

February 26, 2013
Tiny tweezers and their big influence on bustling proteins: Scientists investigate molecular 'clothespins'

(Phys.org)—Tiny molecular tweezers have a remarkable impact on bustling proteins: Three research groups from the University of Duisburg-Essen (UDE), the Chemical Genomics Centre of the Max Planck Society in Dortmund and the Max Planck Institut für Kohlenforschung in Mülheim found that the molecular tweezers designed by Professor Frank Klärner at the UDE can be used to regulate protein - protein interactions by selectively trapping certain residues of the protein – and stick like a clothespin. The research groups of Thomas Schrader (UDE), Christian Ottmann (Chemical Genomics Centre) and Elsa Sanchez Garcia (MPI für Kohlenforschung) believe that this might be a promising approach for applications in medical research, as the water soluble tweezers act without inducing toxicity or explicit side effects.

The scientists have tested their small tweezers on proteins that have influence on many processes in the human body. "We also wanted to know how they work", says Dr. Elsa Sanchez Garcia, leader of a Max Planck research group at the Max Planck Institut für Kohlenforschung. The chemists have found out that although their tweezers prefer to bind at the amino acid lysine, the protein surrounding of the lysine influences the trapping of the tweezers. Thus, with Dr. Sanchez Garcia and her colleague Kenny Bravo Rodriguez have shown which type of lysine the tweezers prefer – and why that is the case. Their work also allowed to lay down rules for predicting the behavior of the tweezers in the presence of proteins with several lysine residues.

Although the tweezers research is at early stages, their potentiality makes it worth for to have a closer look at these results. The 14-3-3 adapter proteins (14-3-3) that the scientists used for their experiments are small recognition proteins that influence many by binding their targets via short and modulating their function. For instance, they are able to stabilize certain tumor suppressors. Because of their important role in many biological processes, 14-3-3 proteins are prospective therapeutic targets against severe disorders, such as cancer.

The three research groups published their findings in the Nature Chemistry magazine.

Explore further: Core tenets of the 'histone code' are universal

More information: www.nature.com/nchem/journal/v5/n3/full/nchem.1570.html

Related Stories

Core tenets of the 'histone code' are universal

September 6, 2007

In one of biology’s most impressive engineering feats, specialized proteins called histones package some six-and-a-half feet of human DNA into a nucleus that averages just five microns in diameter.

Bionanomachines: Proteins as resistance fighters

August 14, 2009

(PhysOrg.com) -- Friction limits the speed and efficiency of macroscopic engines. Is this also true for nanomachines? A Dresden research team used laser tweezers to measure the friction between a single motor protein molecule ...

Recommended for you

New chemistry makes strong bonds weak

July 28, 2015

Researchers at Princeton have developed a new chemical reaction that breaks the strongest bond in a molecule instead of the weakest, completely reversing the norm for reactions in which bonds are evenly split to form reactive ...

Making polymers from a greenhouse gas

July 28, 2015

A future where power plants feed their carbon dioxide directly into an adjacent production facility instead of spewing it up a chimney and into the atmosphere is definitely possible, because CO2 isn't just an undesirable ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.