Understanding termite digestion could help biofuels, insect control

Feb 19, 2013 by Brian Wallheimer

A termite's own biology with help from microorganisms called protists, are keys to the insect's digestion of woody material, according to a Purdue University scientist.

Michael Scharf, the O. Wayne Rollins/Orkin Endowed Chair in Urban Entomology, studies termite digestion to improve biofuels production and find better ways to control . The U.S. Department of Agriculture estimates the cost of controlling termites and repairing damaged homes is $2 billion each year in the United States.

Much of the study on how termites break down woody materials, which focused on the symbiotic relationship between the insect and the bacteria living in its gut, found that bacteria apparently have little, if anything, to do with termite digestion.

Scharf and collaborators at the University of Florida wanted to see how diet affected those bacteria. If the bacteria play a role in digestion, the type of materials the insect eats should affect the composition of the bacterial community living in the termite gut.

More than 4,500 different species of bacteria were cataloged in termite guts. When multiple colonies of termites were independently fed diets of wood or paper, however, those bacteria were unaffected.

"You would think diet would cause huge ecological shifts in bacterial communities, but it didn't. We didn't detect any statistical differences," Scharf said.

What they did see were far more significant changes in gene expression in the termites and the protists that live in the insects' guts along with the bacteria.

"The communities seem very stable, but the host and the are changing a lot based on diet," Scharf said.

The scientists looked at 10,000 from the termites and protists to determine which genes were expressed based on differing diets. Termites and protists fed woody and lignin-rich diets changed expression of about 500 genes, leading Scharf to believe those genes might be important for breaking down lignin, a rigid material in plant cell walls that isn't easily broken down when making biofuels.

"We see much more of the playing field now," Scharf said.

Understanding which genes are involved in digestion should help researchers track down the enzymes that actually break down woody materials in termite digestion. Those enzymes may be tools scientists could use to better break down biomass and extract sugars during biofuel production.

The National Science Foundation, the Consortium for Plant Biotechnology Inc. and the U.S. Department of Energy funded the research.

The findings were detailed in three papers published in the journals Molecular Ecology, Insect Molecular Biology, and Insect Biochemistry and Molecular Biology.

Explore further: Micro fingers for arranging single cells

Related Stories

Nematodes with pest-fighting potential identified

Aug 22, 2012

Formosan subterranean termites could be in for a real headache. U.S. Department of Agriculture (USDA) scientists have identified species of roundworms, or "nematodes," that invade the termite brains and offer a potential ...

Diuscovery in amber reveals ancient biology of termites

May 14, 2009

The analysis of a termite entombed for 100 million years in an ancient piece of amber has revealed the oldest example of "mutualism" ever discovered between an animal and microorganism, and also shows the ...

Recommended for you

Micro fingers for arranging single cells

Apr 24, 2015

Functional analysis of a cell, which is the fundamental unit of life, is important for gaining new insights into medical and pharmaceutical fields. For efficiently studying cell functions, it is essential ...

Detailed structure of human ribosome revealed

Apr 24, 2015

A team at the Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC - CNRS/Université de Strasbourg/Inserm) has evidenced, at the atomic scale, the three-dimensional structure of the complete ...

How to kill a protein

Apr 24, 2015

For decades scientists have been looking closely at how our cells make proteins. But the inverse is equally important: how cells kill them.

How RNA machinery navigates our genomic obstacle course

Apr 24, 2015

Once upon a time, scientists thought RNA polymerase—the molecule that kicks off protein synthesis by transcribing DNA into RNA—worked like a wind-up toy: Set it down at a start site in our DNA and it ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.