Sweet news for stem cell's 'Holy Grail'

February 26, 2013

(Phys.org)—Scientists have used sugar-coated scaffolding to move a step closer to the routine use of stem cells in the clinic and unlock their huge potential to cure diseases from Alzheimer's to diabetes.

Stem cells have the unique ability to turn into any type of human cell, opening up all sorts of therapeutic possibilities for some of the world's incurable diseases and conditions. The problem facing scientists is how to encourage stem cells to turn into the particular type of cell required to treat a specific disease.

But researchers at the University of Manchester's School of Materials and Faculty of Life Sciences have developed a web-like scaffold, coated with long-, that enhances stem- to do just this. The scaffold is formed by a process known as '', creating a mesh of fibres that mimic structures that occur naturally within the body.

The team's results – presented in the - are particularly promising, as the sugar molecules are presented on the surface of the fibres, retaining structural patterns important in their function. The sugars are also 'read' by the stem cells grown on the surface, stimulating and enhancing the formation of types.

Lead author Dr Catherine Merry, from Manchester's Stem Cell Glycobiology group, said: "These meshes have been modified with long, linear sugar molecules, which we have previously shown play a fundamental role in regulating the behaviour of stem cells. By combining the sugar molecules with the fibre web, we hoped to use both biochemical and structural signals to guide the behaviour of stem cells, in a similar way to that used naturally by the body. This is the of research into developing new therapeutics using stem cell technology."

The group anticipate that the combination of the sugar molecules with the fibre web will aid both the growth of and the formation of different cell types from the stem .

Possible applications include tissue engineering, where the meshes could support cells differentiating to form bone, liver or blood vessels, for example.  The meshes also have potential therapeutic implications in the treatment of diseases such as multiple osteochondroma (MO), a rare disease creating bony spurs or lumps caused by abnormal production of these sugar molecules.

Co-author Professor Tony Day, from Manchester's Wellcome Trust Centre for Cell-Matrix Research, said: "This cross-faculty collaboration provides exciting new possibilities for how we might harness the adhesive interactions of extracellular matrix to manipulate stem cell behaviour and realise their full therapeutic potential."

Explore further: Different stem cell types defined by exclusive combinations of genes working together

Related Stories

Sweet success for new stem cell ID trick

November 20, 2008

(PhysOrg.com) -- Biomaterial scientists in Manchester believe they have found a new way of isolating the ‘ingredients’ needed for potential stem cell treatments for nerve damage and heart disease.

The sweet mysteries of the nervous system

May 10, 2011

Researchers in Germany have produced an antibody that allows them to distinguish the numerous types of stem cells in the nervous system better than before.

Researchers discover how tiny sugars regulate stem cells

November 1, 2012

(Phys.org)—Embryonic stem cells hold great promise as a potential cell-based therapy for a myriad of serious diseases, but there is still much to learn before they become a regular part of the doctor's toolkit. Scientists ...

Recommended for you

A new form of real gold, almost as light as air

November 25, 2015

Researchers at ETH Zurich have created a new type of foam made of real gold. It is the lightest form ever produced of the precious metal: a thousand times lighter than its conventional form and yet it is nearly impossible ...

Getting under the skin of a medieval mystery

November 23, 2015

A simple PVC eraser has helped an international team of scientists led by bioarchaeologists at the University of York to resolve the mystery surrounding the tissue-thin parchment used by medieval scribes to produce the first ...

Moonlighting molecules: Finding new uses for old enzymes

November 27, 2015

A collaboration between the University of Cambridge and MedImmune, the global biologics research and development arm of AstraZeneca, has led researchers to identify a potentially significant new application for a well-known ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.