Supercomputers used to supercharge antioxidants

Feb 19, 2013

The future of keeping ageing-related diseases at bay lies with the supercomputer according to scientists from the ARC Centre of Excellence for Free Radical Chemistry and Biotechnology at the University of Sydney.

The research, led by Professor Leo Radom from the University's School of Chemistry, and Dr Amir Karton, University of Western Australia, has used sophisticated and powerful supercomputers to design improved antioxidants which will help stave off ageing-related diseases such as heart disease, cancer, diabetes, and Alzheimer's disease.

Their work was recently published in the , and is featured in a current edition of the prestigious scientific journal, Nature Chemistry.

"While most people consume wine, berries and chocolate for an antioxidant boost, we turned on our computers! We were able to use supercomputers to improve the power of and this may provide future benefit to the health industry," said Dr Karton.

Antioxidants work by scavenging and other oxidative species, preventing them from causing damage to the body's tissues and organs. In this research the team, working alongside Professor Michael Davies and Dr David Pattison from the Heart Research Institute, studied a particular type of antioxidant found in meat, fish and eggs called carnosine, and investigated its effectiveness in scavenging the , hypochlorous acid.

Hypochlorous acid can be of benefit to the body when it is used as part of our immune system to fight off invading pathogens. However, excessive levels of hypochlorous acid in the wrong place or at the wrong time have been linked to the development of heart disease.

"The supercomputer modelling allows us to probe deeply into the molecular structure and helps us to understand just why carnosine is such an effective antioxidant. Armed with this understanding, we are then able to design even better antioxidants," said Professor Radom.

The findings of this research have led to a number of recommendations on how to improve the antioxidant capacity of particular molecules, and ultimately how to custom design for specific purposes in the fight against ageing-related diseases.

"Although we can't yet claim to have uncovered the fountain of eternal youth, our findings are one more step towards better treatments for ageing-related disease, which we hope will improve longevity and the quality of life in the future," said Dr Karton.

Explore further: Achieving chemical-free natural cosmetics with the power of enzymes

More information: www.nature.com/nchem/journal/v… full/nchem.1545.html

Related Stories

Wild strawberries may reduce cancer risk

Dec 03, 2007

We've all seen the term "super food" used to describe those nutrition-loaded edibles that promote health and discourage disease. Powerhouse foods high in antioxidants and phytochemicals that block the development ...

New aging cause revealed by test tube

Mar 22, 2011

(PhysOrg.com) -- Chemists from The Australian National University have discovered a new way that ageing-related diseases can progress, opening up new preventative and treatment possibilities for conditions ...

Recommended for you

A new approach to creating organic zeolites

20 hours ago

Yushan Yan, Distinguished Professor of Engineering at the University of Delaware, is known worldwide for using nanomaterials to solve problems in energy engineering, environmental sustainability and electronics.

A tree may have the answers to renewable energy

Jul 23, 2014

Through an energy conversion process that mimics that of a tree, a University of Wisconsin-Madison materials scientist is making strides in renewable energy technologies for producing hydrogen.

User comments : 0