Stem cells: Keeping differentiation in check

Feb 27, 2013
Stem cells: Keeping differentiation in check
The expression of Ski-related oncogene N (SNON) prior to (left) and after (right) the onset of differentiation. Credit: 2012 Cold Spring Harbor Laboratory Press

Researchers at the A*STAR Institute of Medical Biology (IMB) have discovered a critical checkpoint protein that controls when human embryonic stem cells (hESCs) begin to differentiate.

The Nodal/Activin signaling pathway is an important regulator of hESC fate. Signaling molecules in this pathway trigger the downstream proteins SMAD2 and SMAD3 to activate a transcription factor known as NANOG, as well as other core pluripotency proteins. These regulatory factors, in turn, ensure that the self-renewing hESCs remain capable of forming all cell types in the embryo and avoid differentiation. When differentiation is triggered, however, the role of this signaling axis changes, and the very same pathway begins to drive the formation of primitive cell types, namely the mesoderm and endoderm.

To explain these contrasting effects of Nodal/Activin signaling, a team led by the IMB's Ray Dunn explored the role of repressor proteins in the pathway. "We reasoned that one explanation for why hESCs do not differentiate in the presence of Nodal/Activin is the existence of repressor proteins that decorate the of differentiation genes and turn them off," Dunn explains. "In my lab, we identified one such repressor that fits this bill, [it is] called SNON."

SNON, an abbreviation of Ski-related oncogene N, is a potent repressor of SMAD2 and SMAD3 and, as Dunn's team showed, is abundant in undifferentiated hESCs, but only at the promoters of differentiation genes. At the onset of differentiation, SNON is destroyed by the , the cell's clean-up machinery for unwanted proteins. SNON levels then drop precipitously (see image), which allows SMAD2 and SMAD3 to cooperate with other involved in the determination of , including FoxA2. This leads to the formation of early and endoderm, two of the three primitive germ layers.

"Our research shows that when hESCs begin to differentiate, SNON is targeted for degradation," says Dunn. This finding is consistent with many studies of cancer cell lines, which, like hESCs, retain the ability for continuous proliferation and also have elevated levels of SNON.

One outstanding question, according to Dunn, remains the identity of the molecules that target SNON for degradation. A protein called ARKADIA is one suspect. ARKADIA is known to regulate SNON stability in a cell type-dependent fashion, but its role in remains unclear. "Follow up experiments in our lab aim to determine whether ARKADIA acts alone or collaborates to degrade SNON in hESCs," says Dunn.

Explore further: Reading a biological clock in the dark

More information: Tsuneyoshi, N., et al. The SMAD2/3 corepressor SNON maintains pluripotency through selective repression of mesendodermal genes in human ES cells. Genes & Development 26, 2471–2476 (2012). genesdev.cshlp.org/content/26/22/2471.abstract

add to favorites email to friend print save as pdf

Related Stories

What makes stem cells tick?

Aug 06, 2009

Investigators at the Burnham Institute for Medical Research (Burnham) and The Scripps Research Institute (TSRI) have made the first comparative, large-scale phosphoproteomic analysis of human embryonic stem cells (hESCs) ...

Protein is key to embryonic stem cell differentiation

Mar 18, 2009

Investigators at Burnham Institute for Medical Research (Burnham) have learned that a protein called Shp2 plays a critical role in the pathways that control decisions for differentiation or self-renewal in both human embryonic ...

Therapeutic potential of embryonic stem cells

Jun 18, 2010

Are stem cells ready for prime time? The therapeutic potential of embryonic stem cells has been an intense focus of study and discussion in biomedical research and has resulted in technologies to produce human induced pluripotent ...

Recommended for you

Reading a biological clock in the dark

11 hours ago

Our species' waking and sleeping cycles – shaped in millions of years of evolution – have been turned upside down within a single century with the advent of electric lighting and airplanes. As a result, ...

Scientists see how plants optimize their repair

Oct 20, 2014

Researchers led by a Washington State University biologist have found the optimal mechanism by which plants heal the botanical equivalent of a bad sunburn. Their work, published in the Proceedings of the Na ...

User comments : 0