More new species in geologically dynamic region

Feb 28, 2013

Mountain formation stimulates increased biodiversity. This is what Carina Hoorn of the University of Amsterdam (UvA) and colleagues from the Senckenberg (Germany) and Gothenburg Botanical Garden (Sweden) propose in a Correspondence to the scientific journal Nature Geoscience.

It is often thought that a long-term stable environment lead to and, therefore, greater biodiversity. It now appears that geologically dynamic regions actually play a major role in the increase of biodiversity. The authors have come to this conclusion based on their own research and literature on, among other things, the Andes-.

The scientists argue that young mountain ranges such as the Andes, Himalayas and the Zagros (in Iraq and Iran) have caused large-scale landscape and climatic changes in the last 10 million years. In this way, many new habitats have been formed that were beneficial for the development of new species. The newly created corridors stimulated species exchange, while at the same time acting as barriers and separate populations (as a result of which new species could subsequently arise).

The effects of mountain formation and related climate changes have been felt far beyond the mountain ranges. New river systems followed the changes in relief or shifted their course. Such large-scale changes stretched to the coast and the where the eroded sediments of the mountains accumulated in and marine systems. Mountain building thus also drastically affected the marine-biological development.

New data, better understanding

Although the relationship between biodiversity and mountain formation has been documented previously, Hoorn and colleagues propose that the application of new can more accurately determine the timing of speciation and their relation to tectonics.

New geological techniques can better quantify timing of uplift and paleoaltitudes leading to greater insight into the formation mountain ranges. From a molecular-biological perspective, the evolution of plant and animal material can now be mapped out more accurately; in combination with paleontological data, the timing of biological evolution has become much more transparent. 

The scientists take the interaction between the Andes and Amazon as an example. However, this model is also applicable to other young mountain ranges as new data becomes available.

Explore further: Field study suggests islands and forest fragments are not as alike as thought

More information: Hoorn, C. et al. Biodiversity from mountain building. Nature Geoscience (vol 6, March 2013).

add to favorites email to friend print save as pdf

Related Stories

Stable temperatures boost biodiversity in tropical mountains

Jun 08, 2011

We often think of rainforests and coral reefs as hotspots for biodiversity, but mountains are treasure troves for species too -- especially in the tropics, scientists say. But what drives montane biodiversity? The diversity ...

Plants disappear as a result of climate changes: study

May 08, 2012

Climate changes mean that species are disappearing from European mountain regions. This is shown by new research involving biologists from the University of Gothenburg, the results of which are now being publishing ...

Earth's past gives clues to future changes

Nov 24, 2011

(PhysOrg.com) -- Scientists are a step closer to predicting when and where earthquakes will occur after taking a fresh look at the formation of the Andes, which began 45 million years ago.

How mountain ranges get their shape

Feb 14, 2012

(PhysOrg.com) -- Tectonic, climate and the topography of the mountain ranges interact through a complex system of interactions and feedbacks. The nature and strength of these links are examined on the basis ...

Recommended for you

User comments : 0

More news stories

Orchid named after UC Riverside researcher

One day about eight years ago, Katia Silvera, a postdoctoral scholar at the University of California, Riverside, and her father were on a field trip in a mountainous area in central Panama when they stumbled ...

Turning off depression in the brain

Scientists have traced vulnerability to depression-like behaviors in mice to out-of-balance electrical activity inside neurons of the brain's reward circuit and experimentally reversed it – but there's ...

There's something ancient in the icebox

Glaciers are commonly thought to work like a belt sander. As they move over the land they scrape off everything—vegetation, soil, and even the top layer of bedrock. So scientists were greatly surprised ...