Study says salmon may use magnetic field as navigational aid

Feb 07, 2013
Sockeye salmon must choose a northern or southern route before returning to the Fraser River to spawn. Credit: Nathan Putman, Oregon State University, and the National Science Foundation

The mystery of how salmon navigate across thousands of miles of open ocean to locate their river of origin before journeying upstream to spawn has intrigued biologists for decades, and now a new study may offer a clue to the fishes' homing strategy.

In the study, scientists examined 56 years of fisheries data documenting the return of sockeye salmon to the Fraser River in British Columbia – and the route they chose around Vancouver Island showed a correlation with changes in the intensity of the geomagnetic field.

Results of the study, which was supported by Oregon Sea Grant and the National Science Foundation, were published this week in the journal .

"What we think happens is that when salmon leave the as juveniles and enter the ocean, they imprint the magnetic field – logging it in as a waypoint," said Nathan Putman, a post-doctoral researcher at Oregon State University and lead author on the study. "It serves as a proxy for when they return as adults. It gets them close to their river system and then other, finer cues may take over."

Earth has a predictable, consistent geomagnetic field that weakens as you move from the poles toward the equator. The has an intensity gradient of roughly 58 microtesla, while the is about 24 microtesla.

Salmon originating from Oregon that have spent two to four years in the northern Pacific Ocean off Canada or Alaska would return as adults, the scientists speculate, journeying southward off the coast until they reached a magnetic field intensity similar to that of their youth.

"That should get them to within 50 to 100 kilometers of their own river system and then olfactory cues or some other sense kicks on," said Putman, who conducts research in OSU's Department of Fisheries and Wildlife.

For sockeye salmon coming home after years spent at sea, a magnetic map is apparently responsible for their remarkable sense of direction. That’s according to an analysis of data collected over 56 years and reported online on Feb. 7 in Current Biology, a Cell Press publication. Credit: Current Biology, Putman et al.

provides a natural laboratory for the study of salmon, the researchers point out. Salmon returning to the Fraser River must detour around the massive island to reach the mouth of the river, choosing a southern or northern route. In their study, the scientists found that the "drift" of the correlated with which route the salmon chose.

When the normal intensity level for the shifted to the north, the sockeye were more likely to choose a northern route for their return. When the field shifted slightly south, they chose a southern route.

This "field drift" accounted for about 16 percent of the variation in the migration route, Putman said, while variations in sea surface temperatures accounted for 22 percent. The interactive effect between these two variables accounted for an additional 28 percent of the variation in the migration route.

"Salmon are a cold-water fish, and all things being equal, they prefer cold water," said Putman, who earned his Ph.D. in biology from the University of North Carolina at Chapel Hill. "But the fact that they also demonstrate geomagnetic fidelity in choosing a route shows that this could be a major instrument in their biological toolbox to guide their way home."

Putman said that his previous studies of the Columbia River have shown that the magnetic intensity shifts less than 30 kilometers in either direction over a period of three years, which is about the length of time many salmon spend in the ocean.

"Salmon have to get it right because they only have one chance to make it back to their home river," Putman said, "so it makes sense that they may have more than one way to get there. The magnetic field is amazingly consistent, so that is a strategy that can withstand the test of time. But they may also use the sun as a compass, track waves breaking on the beach through infrasound, and use smell."

Putman and OSU fisheries biologist David Noakes plan to follow through with experiments on varying the for in a laboratory setting, using the Oregon Hatchery Research Center in Oregon's Alsea River basin.

Explore further: Too many chefs: Smaller groups exhibit more accurate decision-making

More information: Current Biology, Putman et al.: "Evidence for geomagnetic imprinting as a homing mechanism in Pacific salmon." dx.doi.org/10.1016/j.cub.2012.12.041

Related Stories

Canada's lost salmon found

Aug 25, 2010

Sockeye salmon, which mysteriously vanished last year prompting a government inquiry, are expected to return to Canada's Fraser River this month in numbers not seen since 1913, officials said Wednesday.

Three keys to sockeye decline

May 18, 2012

(Phys.org) -- Competition with pink salmon in the open ocean could be an important factor in the long-term decline in abundance of sockeye salmon populations in the Fraser River, according to new research from Simon Fraser ...

West coast experiencing decreasing trends in salmon spawning

Jul 03, 2012

The number of adult sockeye salmon produced per spawner has been decreasing over the last decade or more along the western coast of North America, from Washington state up through British Columbia and southeast Alaska. A ...

Study shows sea lice problem widespread

Nov 09, 2010

Salmon farms are transferring parasitic sea lice to wild salmon over a much wider region than first thought. That’s the conclusion of a newly published article called Evidence of farm-induced parasite infestations on ...

Recommended for you

Field study shows how sailfish use their bill to catch fish

21 hours ago

(Phys.org) —A large team of European researchers has finally revealed the purpose of the long, thin, needle-like bill sported by the famous sailfish. It's used, they report in their paper published in Proceedings of ...

User comments : 0

More news stories

Phase transiting to a new quantum universe

(Phys.org) —Recent insight and discovery of a new class of quantum transition opens the way for a whole new subfield of materials physics and quantum technologies.

Imaging turns a corner

(Phys.org) —Scientists have developed a new microscope which enables a dramatically improved view of biological cells.

Sensors may keep hospitalized patients from falling

(Medical Xpress)—To keep hospitalized patients safer, University of Arizona researchers are working on new technology that involves a small, wearable sensor that measures a patient's activity, heart rate, ...