Rethinking the process used to machine industrially important ceramics could reduce damaging cracks and chips

Feb 13, 2013
By eye, the holes produced in an alumina plate by ultrasonic machining (left) look smooth, but under a microscope cracks and chips at the edges (right) become apparent. Credit: 2012 Elsevier

Ceramics are hard, chemically inert and can withstand high temperatures. These attributes make them ideal structural components in engines, high-performance disk brakes and medical implants. However, as ceramics are also brittle, using conventional tools—such as drills—to machine them is difficult. Instead, manufacturers rely on ultrasonic machining, in which a 'hammer' rapidly vibrates up and down. This process pushes slurry, which contains fine and abrasive grit, into the material and causes chipping.

Research by G.C. Lim and co-workers at the A*STAR Institute of , Singapore, has now improved understanding of how this abrading process creates in a ceramic, making it less durable for applications. The team's findings could inspire new approaches to machining ceramics, a key element in Singapore's rapidly growing manufacturing sector.

Ultrasonic machining is known to leave cracks at the entrance and exit of a drilled hole, and a rough surface within the hole (see image). Often, these defects are visible only under a microscope; nonetheless, they make the hole and surrounding material more susceptible to wear and tear. "Imperfections act as initiating locations, where cracks and fractures occur and propagate more easily than other places, resulting in early failure of the component," says Lim.

The researchers studied crack formation by drilling holes of between 0.7 and 3.0 millimeters in diameter into plates made of 3 industrially important ceramics: , zirconia and . They recorded images of the cracks and chips along the inner sides of the holes with a microscope and then used diagrams to model the way force is transferred from the hammering tool to the grit, and from the grit into the ceramic.

Lim and his colleagues found that as the grit removes material—by making tiny pits or rubbing against the walls—it creates cracks, which can be up to four times longer than the grit particles and extend out radially from the hole. The team concluded that these cracks are inherent to the way ultrasonic machining works, which means the number of cracks can be reduced by using smaller grit particles but never entirely eliminated.

Lim says they are now in a better position to optimize the drilling process. Since the smallest grit particles yield the smoothest holes but make drilling take longer, Lim recommends a two-step process: quickly drill a slightly smaller hole than needed with a large grit size, and then use a smaller grit size to make the final hole with a smooth finish.

Explore further: New molecule puts scientists a step closer to understanding hydrogen storage

More information: Nath, C., Lim, G. C., & Zheng, H. Y. Influence of the material removal mechanisms on hole integrity in ultrasonic machining of structural ceramics. Ultrasonics 52, 605–613 (2012). www.sciencedirect.com/science/… ii/S0041624X11002770

Related Stories

Group uses controlled cracking for nanofabrication

May 10, 2012

(Phys.org) -- When creating nanomaterials, cracking is generally considered a problem; it usually means something has gone wrong and the result, as with other material making processes such as glass or ceramics, ...

Watch Out for Flying Moondust

Nov 26, 2007

At Cape Canaveral, not far from the launch pad where the space shuttle lifts off, there's a ragged hole in a chain link fence. Its message: Watch out for flying boulders.

Shooting at ceramics

Apr 02, 2012

Producing thin ceramic components has until now been a laborious and expensive process, as parts often get distorted during manufacture and have to be discarded as waste. Researchers are now able to reshape ...

Why don't insect wings break?

Aug 23, 2012

Researchers from Trinity College Dublin have shown that the wings of insects are not as fragile as they might look. A study just published in the scientific journal PLOS ONE now shows that the characteristic networ ...

Recommended for you

A new approach to creating organic zeolites

Jul 24, 2014

Yushan Yan, Distinguished Professor of Engineering at the University of Delaware, is known worldwide for using nanomaterials to solve problems in energy engineering, environmental sustainability and electronics.

A tree may have the answers to renewable energy

Jul 23, 2014

Through an energy conversion process that mimics that of a tree, a University of Wisconsin-Madison materials scientist is making strides in renewable energy technologies for producing hydrogen.

User comments : 0