Model that predicts real-world behaviors of insulator interfaces makes designing 'nano-electronic' materials simpler

Feb 13, 2013
A new theoretical model enables accurate predictions of dipoles at oxide interfaces (left, electron microscopy image) using the classical property of electronegativity (right). The scale shows how two elements with different relative electronegativities align at an interface. Credit: 2013 A*STAR Institute of Materials Research and Engineering

(Phys.org)—Advances in miniaturization have made electronic devices cheaper and more powerful, but these procedures also create new challenges for materials scientists. For example, traditional silicon dioxide insulators used in field-effect transistors begin to leak small amounts of current at nanoscale dimensions. To combat this problem, researchers have developed insulators called 'high-k dielectrics' that link heavier elements, such as hafnium or zirconium, into insulating oxide films with exceptional charge-isolating capabilities.

Integrating high-k dielectrics into circuits, however, creates a different manufacturing problem. Localized electric fields known as charged dipoles can form at insulator–semiconductor interfaces and generate unwanted voltages that impact device performance. Sing Yang Chiam from the A*STAR Institute of Materials Research and Engineering in Singapore and co-workers have now developed a model that can identify interface dipole problems before they appear—a finding that promises to help end the 'trial-and-error' design issues typical of high-k dielectrics.

Currently, employ extensive quantum mechanical calculations to determine whether or not new high-k dielectrics will have interface dipoles. Chiam and co-workers investigated a more intuitive approach: they linked the appearance of interface dipoles to the classical property of electronegativity, a number that relates an element's electron-attracting power to its position in the periodic table.

Scientists have previously avoided estimating dipoles with electronegativity values because, in many cases, they predict incorrect electric field polarities. To resolve this discrepancy, Chiam and co-workers correlated theoretical electronegativity with experimental 'charge neutrality levels'—electronic energies required to counterbalance dipoles on insulator interfaces. After measuring the charge neutrality on several different high-k dielectrics with X-ray and ultraviolet radiation (see image), the team plotted this data against electronegativity. They discovered that a simple linear equation connected the two parameters.

Further manipulation of this equation revealed it could also predict a so-called 'dipole neutrality point' (DNP) where interfacial dipoles flip polarity. Armed with this new theoretical tool, the researchers investigated both well-known and novel high-k dielectric/semiconductor interfaces. They found that the DNP concept provided accurate predictions of dipole polarity and strength: the offset voltages needed to turn on a high-k dielectric field-effect transistor closely matched values generated from the electronegativity values.

Chiam notes that the straightforwardness of this model should make it exceptionally practical for scientific discovery. "This is the simplest method to find at material interfaces before starting experiments," he says. "Our model can predict what kinds of bulk or interface modifications are needed to offset dipole values—a significant time saving over traditional approaches."

Explore further: Team pioneers strategy for creating new materials

More information: Liu, Z. Q., Chim, W. K., Chiam, S. Y., Pan, J. S. & Ng, C. M. An interface dipole predictive model for high-k dielectric/semiconductor heterostructures using the concept of the dipole neutrality point. Journal of Materials Chemistry 22, 17887–17892 (2012). dx.doi.org/10.1039/c2jm32589f

Related Stories

Emerging new properties at oxide interfaces

Nov 29, 2011

In many ionic materials, including the oxides, surfaces created along specific directions can become electrically charged. By the same token, such electronic charging, or 'polarisation', can also occur at the interface of ...

New family of liquid crystals created

Oct 05, 2010

(PhysOrg.com) -- Chemists at Vanderbilt University have created a new class of liquid crystals with unique electrical properties that could improve the performance of digital displays used on everything from ...

Researchers discover fastest light-driven process

Dec 05, 2012

(Phys.org)—A discovery that promises transistors – the fundamental part of all modern electronics – controlled by laser pulses that will be 10,000 faster than today's fastest transistors has been made by a Georgia State ...

Data storage takes an electric turn

Mar 29, 2011

(PhysOrg.com) -- German scientists from the Forschungszentrum Julich and the Max Planck Institute of Microstructure Physics in Halle have discovered the basis for the next generation of memory devices. In ...

New form of hafnium oxide developed

Feb 07, 2012

(PhysOrg.com) -- A novel material developed by researchers at the University of Cambridge is opening up new possibilities for next generation electronic and optoelectronic devices, and paving the way for further ...

Recommended for you

Team pioneers strategy for creating new materials

Aug 29, 2014

Making something new is never easy. Scientists constantly theorize about new materials, but when the material is manufactured it doesn't always work as expected. To create a new strategy for designing materials, ...

Plug n' Play protein crystals

Aug 29, 2014

Almost a hundred years ago in 1929 Linus Pauling presented the famous Pauling's Rules to describe the principles governing the structure of complex ionic crystals. These rules essentially describe how the ...

Breaking benzene

Aug 27, 2014

Aromatic compounds are found widely in natural resources such as petroleum and biomass, and breaking the carbon-carbon bonds in these compounds plays an important role in the production of fuels and valuable ...

User comments : 0