Quantum dots deliver vitamin D to tumors for possible inflammatory breast cancer treatment

Feb 01, 2013

The shortened daylight of a Maine winter may make for long, dark nights – but it has shone a light on a novel experimental approach to fighting inflammatory breast cancer (IBC), an especially deadly form of breast cancer.

The new approach enlists the active form of Vitamin D3, called calcitriol, which is delivered therapeutically by quantum dots. Quantum dots are an engineered light-emitting nanoscale delivery vehicle. This new preliminary work shows the dots can be used to rapidly move high concentrations of calcitriol to targeted tumor sites where cancer cells accumulate, and also through the lymph system where the cancer spreads. With this approach, the calcitriol can fight on multiple fronts and the targeted location can be visualized with an imaging system tracking the . The research will be presented at the 57th Annual Meeting of the Biophysical Society (BPS), held Feb. 2-6, 2013, in Philadelphia, Pa.

University of Delaware cancer researcher Anja Nohe was living in Maine when she first received funding from the Maine Cancer Foundation to determine the effect of calcitriol on . Reading cancer literature helped her make connections between cancer, vitamin D, and the daylight regime of . "By talking with talented colleagues about these ideas, the foundation was set for the current project," she says. After moving to the University of Delaware, she began working with Kenneth Van Golen, "an expert in the biology of IBC," to evaluate calcitriol.

Compared to other forms of , IBC is especially difficult to treat. It has a five-year survival rate of 40% versus 87% for all other breast cancers. A big part of what makes IBC treatment difficult is its multi-site growth pattern. Current such as combinations of chemotherapy, surgery and radiation, have failed to significantly improve IBC survival rates.

This early experimental work on mice is encouraging because data show calcitriol can inhibit invasion and migration of SUM149 cells, an IBC cell line. "New IBC therapies are urgently needed, which is why the goal of my work is to find a successful treatment for , especially one with fewer side effects," Nohe says.

Explore further: Research reveals how our bodies keep unwelcome visitors out of cell nuclei

More information: Presentation #2953-Pos, "Using calcitriol conjugated quantum dots to target inflammatory breast cancer tumors and metastasis in vivo," will take place at 10:30 a.m. on Wednesday, Feb. 6, 2013, in the Pennsylvania Convention Center, Hall C. ABSTRACT: tinyurl.com/acw94xg

Related Stories

Inflammatory breast cancer focus of new report

Oct 19, 2010

A rare and deadly form of breast cancer that often goes unrecognized by clinicians and patients alike is the focus of a new report from leading researchers. Inflammatory breast cancer (IBC) has made headlines as an unrecognized ...

Recommended for you

Nanomaterials to preserve ancient works of art

18 hours ago

Little would we know about history if it weren't for books and works of art. But as time goes by, conserving this evidence of the past is becoming more and more of a struggle. Could this all change thanks ...

Learning anti-microbial physics from cicada

18 hours ago

(Phys.org) —Inspired by the wing structure of a small fly, an NPL-led research team developed nano-patterned surfaces that resist bacterial adhesion while supporting the growth of human cells.

Protons fuel graphene prospects

Nov 26, 2014

Graphene, impermeable to all gases and liquids, can easily allow protons to pass through it, University of Manchester researchers have found.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.