New protein probes find enzymes for biofuel production

Feb 06, 2013
New protein probes find enzymes for biofuel production
New protein probes are helping find the best microbial enzymes to break down cellulose (top) as part of the process to convert biomass into biofuels, such as ethanol (bottom).

New protein probes are now helping scientists find the best biomass-to-biofuel production enzymes that nature has to offer. Turning biomass into biofuel hinges on the breakdown of the energy-rich primary component of plant matter, cellulose. Cellulose is a polysaccharide, or 'many sugars' bonded together. For biofuel production, the bonds between the many sugars must be broken so that those sugars can then be further processed, for example, fermented to make ethanol. But breaking these bonds is no small feat because they are strong. The best known candidate for this job? A group of microbe-made enzymes called glycoside hydrolases, or GHs.

To help find the most efficient GHs in nature, a team of EMSL users built a suite of probes purposefully designed to bind to known GH active sites and each containing a handle to which a reporter can be attached, enabling further analysis such as the visualization of probe-bound proteins using fluorophores or the isolation of probe-bound proteins for mass spectrometry characterization.  Importantly, because GHs share close catalytic similarities, the probes bind not just to known GHs but to previously undiscovered GHs as well. The team demonstrated the effectiveness of the probes by incubating them with the secretome of—or all of the proteins secreted by—Clostridium thermocellum, a biofuel-relevant that has remarkably effective cellulose degradation machinery and can even convert cellulose into ethanol directly. tools at EMSL were used to identify the proteins of the secretome that were bound by the probes and proved the probes to be GH selective and specific.

This novel approach is a high-throughput way to find biofuel-relevant enzymes in complex mixtures and can be used to study any microbe. Future efforts are focused on further optimizing the selectivity of the probe suite and expanding its application to fungi.

Explore further: Heaven scent: Finding may help restore fragrance to roses

More information: Chauvigné-Hines L., 2012. Suite of Activity-Based Probes for Cellulose-Degrading Enzymes. Journal of the American Chemical Society 134(50):20521–20532. DOI 10.1021/ja309790w

Related Stories

Garbage bug may help lower the cost of biofuel

Nov 29, 2012

One reason that biofuels are expensive to make is that the organisms used to ferment the biomass cannot make effective use of hemicellulose, the next most abundant cell wall component after cellulose. They convert only the ...

Recommended for you

Study on pesticides in lab rat feed causes a stir

Jul 02, 2015

French scientists published evidence Thursday of pesticide contamination of lab rat feed which they said discredited historic toxicity studies, though commentators questioned the analysis.

International consortium to study plant fertility evolution

Jul 02, 2015

Mark Johnson, associate professor of biology, has joined a consortium of seven other researchers in four European countries to develop the fullest understanding yet of how fertilization evolved in flowering plants. The research, ...

Making the biofuels process safer for microbes

Jul 02, 2015

A team of investigators at the University of Wisconsin-Madison and Michigan State University have created a process for making the work environment less toxic—literally—for the organisms that do the heavy ...

Why GM food is so hard to sell to a wary public

Jul 02, 2015

Whether commanding the attention of rock star Neil Young or apparently being supported by the former head of Greenpeace, genetically modified food is almost always in the news – and often in a negative ...

The hidden treasure in RNA-seq

Jul 01, 2015

Michael Stadler and his team at the Friedrich Miescher institute for Biomedical Research (FMI) have developed a novel computational approach to analyze RNA-seq data. By comparing intronic and exonic RNA reads, ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.