New protein probes find enzymes for biofuel production

Feb 06, 2013
New protein probes find enzymes for biofuel production
New protein probes are helping find the best microbial enzymes to break down cellulose (top) as part of the process to convert biomass into biofuels, such as ethanol (bottom).

New protein probes are now helping scientists find the best biomass-to-biofuel production enzymes that nature has to offer. Turning biomass into biofuel hinges on the breakdown of the energy-rich primary component of plant matter, cellulose. Cellulose is a polysaccharide, or 'many sugars' bonded together. For biofuel production, the bonds between the many sugars must be broken so that those sugars can then be further processed, for example, fermented to make ethanol. But breaking these bonds is no small feat because they are strong. The best known candidate for this job? A group of microbe-made enzymes called glycoside hydrolases, or GHs.

To help find the most efficient GHs in nature, a team of EMSL users built a suite of probes purposefully designed to bind to known GH active sites and each containing a handle to which a reporter can be attached, enabling further analysis such as the visualization of probe-bound proteins using fluorophores or the isolation of probe-bound proteins for mass spectrometry characterization.  Importantly, because GHs share close catalytic similarities, the probes bind not just to known GHs but to previously undiscovered GHs as well. The team demonstrated the effectiveness of the probes by incubating them with the secretome of—or all of the proteins secreted by—Clostridium thermocellum, a biofuel-relevant that has remarkably effective cellulose degradation machinery and can even convert cellulose into ethanol directly. tools at EMSL were used to identify the proteins of the secretome that were bound by the probes and proved the probes to be GH selective and specific.

This novel approach is a high-throughput way to find biofuel-relevant enzymes in complex mixtures and can be used to study any microbe. Future efforts are focused on further optimizing the selectivity of the probe suite and expanding its application to fungi.

Explore further: Can tapioca replace corn as the main source for starch sweeteners?

More information: Chauvigné-Hines L., 2012. Suite of Activity-Based Probes for Cellulose-Degrading Enzymes. Journal of the American Chemical Society 134(50):20521–20532. DOI 10.1021/ja309790w

add to favorites email to friend print save as pdf

Related Stories

Garbage bug may help lower the cost of biofuel

Nov 29, 2012

One reason that biofuels are expensive to make is that the organisms used to ferment the biomass cannot make effective use of hemicellulose, the next most abundant cell wall component after cellulose. They convert only the ...

Recommended for you

Turning winery waste into biofuels

1 hour ago

Researchers at Swinburne University of Technology have developed a technique for converting winery waste into compounds that could have potential value as biofuels or medicines.

Project launched to study evolutionary history of fungi

18 hours ago

The University of California, Riverside is one of 11 collaborating institutions that have been funded a total of $2.5 million by the National Science Foundation for a project focused on studying zygomycetes – ancient li ...

Different watering regimes boost crop yields

21 hours ago

Watering tomato plants less frequently could improve yields in saline conditions, according to a study of the impact of water and soil salinity on vegetable crops.

User comments : 0