Primitive forms of complex human processes identified in Amoeba

Feb 22, 2013

(Phys.org)—The evolution of multicellularity marks one of the most profound evolutionary developments contributing to the appearance of human and animal life on the planet. However, with relatively little known about this seminal event, a number of international genome research efforts have focused on identifying a timeline for the emergence of key genome features that contributed to multicellularity.

The findings of new research now adds to a growing body of data that the development of multicellular animals was, in many key respects, enabled through a re-purposing of existing facilities already present in .

The Science Foundation Ireland (SFI) funded study led by Conway Fellow Professor Brendan Loftus, UCD School of Medicine & Medical Science sequenced the genome of a unicellular amoeba (Acanthamoeba castellanii).

The researchers found within the genome an intact signalling facility (tyrosine kinase signalling) long associated with multicelluar organisms and thought to have arisen much later in . Tyrosine kinase signalling is a core means of intercellular communication and coordination. Its in unicellular organisms indicates the necessity for a sophisticated level of interaction with one's neighbours even as a unicellular organism.

The study also demonstrated that pathogen recognition receptors, a key element of the innate immune system of humans used to recognise and engulf pathogens, were already in use as part of a primitive form of self-defence in amoebae.

As many human pathogens evolve their virulence outside of human hosts through interactions in their environments, these findings inform how certain pathogens have evolved to evade or manipulate the innate immune system.

The research article is published in the current issue of the scientific journal, Genome Biology and highlighted as a 'paper of note' in the genomics portal, GenomeWeb.

Explore further: Study on pesticides in lab rat feed causes a stir

More information: Genome of Acanthamoeba castellanii highlights extensive lateral gene transfer and early evolution of tyrosine kinase signalling. Clarke M, Lohan A et al. Genome Biology 2013, 14:R11 doi: 10.1186/gb-2013-14-2-r11

Related Stories

Origins of multicellularity: All in the family

Jul 08, 2010

One of the most pivotal steps in evolution-the transition from unicellular to multicellular organisms-may not have required as much retooling as commonly believed, found a globe-spanning collaboration of scientists ...

Mimivirus isolated, genome amputated

Jun 13, 2011

In the absence of competition with other microorganisms, Mimivirus, the largest known DNA virus, loses 17% of its genome. This has recently been demonstrated by a French-American collaboration including researchers from CNRS, ...

Recommended for you

Study on pesticides in lab rat feed causes a stir

3 hours ago

French scientists published evidence Thursday of pesticide contamination of lab rat feed which they said discredited historic toxicity studies, though commentators questioned the analysis.

International consortium to study plant fertility evolution

7 hours ago

Mark Johnson, associate professor of biology, has joined a consortium of seven other researchers in four European countries to develop the fullest understanding yet of how fertilization evolved in flowering plants. The research, ...

Making the biofuels process safer for microbes

9 hours ago

A team of investigators at the University of Wisconsin-Madison and Michigan State University have created a process for making the work environment less toxic—literally—for the organisms that do the heavy ...

Why GM food is so hard to sell to a wary public

10 hours ago

Whether commanding the attention of rock star Neil Young or apparently being supported by the former head of Greenpeace, genetically modified food is almost always in the news – and often in a negative ...

The hidden treasure in RNA-seq

Jul 01, 2015

Michael Stadler and his team at the Friedrich Miescher institute for Biomedical Research (FMI) have developed a novel computational approach to analyze RNA-seq data. By comparing intronic and exonic RNA reads, ...

User comments : 3

Adjust slider to filter visible comments by rank

Display comments: newest first

Tausch
1 / 5 (1) Feb 22, 2013
O.k.
Suggestion.
The substitute word 'precursor' is recommended wherever you see the word 'primitive'. Or primordial. Primordial might offend an Irish band used in association with this biology.

This suggests tandem origins and sources as well.
Kudos.
Torbjorn_Larsson_OM
3 / 5 (2) Feb 23, 2013
Indeed, multicellularity has appeared many times, most famously besides (several times in) eukaryotes in cyanobacteria as it ushered in the Great Oxidation Event.
C_elegans
not rated yet Feb 23, 2013
Are you crazy? No bacterium is an obligate multicellular organism.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.