Physics duo offer explanation of why tiny bubbles last longer on a surface

Feb 04, 2013 by Bob Yirka report
Sketch of a liquid layer in contact with a solid (left). The top of the liquid is exposed to atmospheric conditions. At the solid-liquid interface nanobubbles are present. The arrows indicate the gas flow direction. On the right a further enlargement of one nanobubble is shown. Credit: arxiv.org/abs/1210.3484

(Phys.org)—Physicists in The Netherlands, Detlef Lohse and Joost Weijs of the University of Twente, have offered an explanation of why nano-sized bubbles last considerably longer when sitting on a solid surface covered by a fluid, than when they are allowed float free. In their paper published in Physical Review Letters, the two argue that surface-held bubbles have increased radii of curvature and sit in pools of liquid infused with gas, which causes them to last longer.

Scientists know that the smaller the of curvature a bubble has, the less time it will tend to exist before popping. Thus, nano-sized bubbles should pop almost instantly, and in most cases they do. One exception is when they are sitting in a fluid that is covering a solid surface. In this case, nano-sized bubbles have been observed existing for up to days at a time, and until now, no one has been able to offer a reasonable explanation as to why this occurs.

In their paper, the researchers argue that there are two factors at play. The first is the fact that due to the , the radii of curvature is increased relative to bubbles flowing freely of the same volume, because they are flattened out by the surface. This increases their strength. Second, the researchers noted that the longer lasting bubbles tended to exist in groups of bubbles, rather than as isolated entities. This they means that the liquid in which they all exists has more gas in it (expelled from the bubbles themselves) and thus because it is more saturated, it's less able to accept more gas from the still existing bubbles. Free on the other hand, leave their behind as they rise to the surface.

Gaining a better understanding of bubble formation and popping is more than a mere curiosity – a more thorough understanding of the underlying principles could lead to better pumps in or perhaps assist in the development of medical delivery systems. Also, learning how to prevent bubble formation may also help reduce problems that occur when they impede flow or change the course of fluids in dynamic systems.

Explore further: Pseudoparticles travel through photoactive material

More information: Why Surface Nanobubbles Live for Hours, Phys. Rev. Lett. 110, 054501 (2013) link.aps.org/doi/10.1103/PhysRevLett.110.054501 . On ArXiv arxiv.org/abs/1210.3484

Abstract
We present a theoretical model for the experimentally found but counterintuitive exceptionally long lifetime of surface nanobubbles. We can explain why, under normal experimental conditions, surface nanobubbles are stable for many hours or even up to days rather than the expected microseconds. The limited gas diffusion through the water in the far field, the cooperative effect of nanobubble clusters, and the pinned contact line of the nanobubbles lead to the slow dissolution rate.

Related Stories

Mysterious nanobubble burst?

Dec 02, 2008

(PhysOrg.com) -- The nanobubbles that develop on submerged surfaces should not really be able to exist. Because of the enormous internal pressure, they should disappear within a short time. Nevertheless, they ...

Sound increases the efficiency of boiling

May 24, 2012

Scientists at the Georgia Institute of Technology achieved a 17-percent increase in boiling efficiency by using an acoustic field to enhance heat transfer. The acoustic field does this by efficiently removing vapor bubbles ...

The indiscretions of a champagne bubble paparazzi

Feb 14, 2012

The innermost secrets of champagne bubbles are about to be unveiled in the Springer journal European Physical Journal ST. This fascinating work is the brainchild of Gérard Liger-Belair, a scientist tackli ...

Report describes the physics of the 'bends'

Jun 22, 2010

As you go about your day-to-day activities, tiny bubbles of nitrogen come and go inside your tissues. This is not a problem unless you happen to experience large changes in ambient pressure, such as those encountered by scuba ...

Recommended for you

Pseudoparticles travel through photoactive material

Apr 23, 2015

Researchers of Karlsruhe Institute of Technology (KIT) have unveiled an important step in the conversion of light into storable energy: Together with scientists of the Fritz Haber Institute in Berlin and ...

From metal to insulator and back again

Apr 22, 2015

New work from Carnegie's Russell Hemley and Ivan Naumov hones in on the physics underlying the recently discovered fact that some metals stop being metallic under pressure. Their work is published in Physical Re ...

Electron spin brings order to high entropy alloys

Apr 22, 2015

Researchers from North Carolina State University have discovered that electron spin brings a previously unknown degree of order to the high entropy alloy nickel iron chromium cobalt (NiFeCrCo) - and may play ...

Expanding the reach of metallic glass

Apr 22, 2015

Metallic glass, a class of materials that offers both pliability and strength, is poised for a friendly takeover of the chemical landscape.

Electrons move like light in three-dimensional solid

Apr 22, 2015

Electrons were observed to travel in a solid at an unusually high velocity, which remained the same independent of the electron energy. This anomalous light-like behavior is found in special two-dimensional ...

Quantum model helps solve mysteries of water

Apr 20, 2015

Water is one of the most common and extensively studied substances on earth. It is vital for all known forms of life but its unique behaviour has yet to be explained in terms of the properties of individual ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.