Physicist discusses high-order harmonic generation at AAAS

February 17, 2013

One-billionth of a billionth of a second. That's the scale – an attosecond – at which scientists seek to image and control electronic motion in matter. Its natural time scale.

The principle of science was the focus of a Sunday (Feb. 17) symposium during the annual meeting of the American Association for the Advancement of Science. University of Nebraska-Lincoln Physicist Anthony Starace was among the speakers, presenting "High-Order Harmonic Generation, Attosecond Science and Control of ."

Starace, a George Holmes University Professor of Physics at UNL, reviewed current theoretical understanding of the "new frontier" of high-order harmonic generation and discussed the prospects for achieving the goals of attosecond science.

"Because electrons move on a scale of Angstroms (one ten-billionth of a meter), light pulses used to illuminate this motion must have high energies so that their de Broglie wavelength is sufficiently small to be able to resolve (or image) the electron motion," Starace said. "Also, because electrons move so fast, light pulses must have durations that are shorter than the typical time scale for electron motion."

De Broglie waves, a theory of , indicate how a wavelength is inversely proportional to the momentum of a particle.

Attosecond pulses are becoming the preferred future tools for imaging, visualizing and even controlling electrons in matter in their natural time scale. Attosecond research could eventually open new applications in a wide range of fields including nanotechnology and life sciences, based on the ultimate visualization and control of the of the electron.

Attosecond science evolved from advances in modern laser technology that allow generation of ultra-short light pulses, or high-order harmonic generation – Starace's area of expertise.

Starace joined seven other scientists to discuss "Attosecond Science in Chemical, , and Energy Science." The AAAS annual meeting was Feb. 14-18 in Boston.

Explore further: Scientists track electrons in molecules

Related Stories

Scientists track electrons in molecules

June 13, 2010

(PhysOrg.com) -- Physicists in Europe have successfully glimpsed the motion of electrons in molecules. The results are a major boon for the research world. Knowing how electrons move within molecules will facilitate observations ...

Flashes of light out of the mirror

June 12, 2012

(Phys.org) -- A team of the Laboratory of Attosecond physics at the Max Planck Institute of Quantum Optics developed an alternative way of generating attosecond flashes of light. 

Recommended for you

Physicists create first photonic Maxwell's demon

February 12, 2016

(Phys.org)—Maxwell's demon, a hypothetical being that appears to violate the second law of thermodynamics, has been widely studied since it was first proposed in 1867 by James Clerk Maxwell. But most of these studies have ...

Einstein's waves: a 100-year odyssey

February 12, 2016

When Albert Einstein forged the bedrock theory of modern physics 100 years ago, he had no computer, no internet, no printer—ballpoint pens and pocket calculators did not exist and few homes had telephones.

Scientists glimpse Einstein's gravitational waves (Update)

February 11, 2016

In a landmark discovery for physics and astronomy, scientists said Thursday they have glimpsed the first direct evidence of gravitational waves, ripples in the fabric of space-time that Albert Einstein predicted a century ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.