Physicist discusses high-order harmonic generation at AAAS

Feb 17, 2013

One-billionth of a billionth of a second. That's the scale – an attosecond – at which scientists seek to image and control electronic motion in matter. Its natural time scale.

The principle of science was the focus of a Sunday (Feb. 17) symposium during the annual meeting of the American Association for the Advancement of Science. University of Nebraska-Lincoln Physicist Anthony Starace was among the speakers, presenting "High-Order Harmonic Generation, Attosecond Science and Control of ."

Starace, a George Holmes University Professor of Physics at UNL, reviewed current theoretical understanding of the "new frontier" of high-order harmonic generation and discussed the prospects for achieving the goals of attosecond science.

"Because electrons move on a scale of Angstroms (one ten-billionth of a meter), light pulses used to illuminate this motion must have high energies so that their de Broglie wavelength is sufficiently small to be able to resolve (or image) the electron motion," Starace said. "Also, because electrons move so fast, light pulses must have durations that are shorter than the typical time scale for electron motion."

De Broglie waves, a theory of , indicate how a wavelength is inversely proportional to the momentum of a particle.

Attosecond pulses are becoming the preferred future tools for imaging, visualizing and even controlling electrons in matter in their natural time scale. Attosecond research could eventually open new applications in a wide range of fields including nanotechnology and life sciences, based on the ultimate visualization and control of the of the electron.

Attosecond science evolved from advances in modern laser technology that allow generation of ultra-short light pulses, or high-order harmonic generation – Starace's area of expertise.

Starace joined seven other scientists to discuss "Attosecond Science in Chemical, , and Energy Science." The AAAS annual meeting was Feb. 14-18 in Boston.

Explore further: Simultaneous imaging of ferromagnetic and ferroelectric domains

add to favorites email to friend print save as pdf

Related Stories

Flashes of light out of the mirror

Jun 12, 2012

(Phys.org) -- A team of the Laboratory of Attosecond physics at the Max Planck Institute of Quantum Optics developed an alternative way of generating attosecond flashes of light. 

Scientists track electrons in molecules

Jun 13, 2010

(PhysOrg.com) -- Physicists in Europe have successfully glimpsed the motion of electrons in molecules. The results are a major boon for the research world. Knowing how electrons move within molecules will ...

Recommended for you

Hide and seek: Sterile neutrinos remain elusive

19 hours ago

The Daya Bay Collaboration, an international group of scientists studying the subtle transformations of subatomic particles called neutrinos, is publishing its first results on the search for a so-called ...

Novel approach to magnetic measurements atom-by-atom

23 hours ago

Having the possibility to measure magnetic properties of materials at atomic precision is one of the important goals of today's experimental physics. Such measurement technique would give engineers and physicists an ultimate ...

Scientists demonstrate Stokes drift principle

Oct 01, 2014

In nature, waves – such as those in the ocean – begin as local oscillations in the water that spread out, ripple fashion, from their point of origin. But fans of Star Trek will recall a different sort of wave pattern: ...

User comments : 0