Physicist discusses high-order harmonic generation at AAAS

Feb 17, 2013

One-billionth of a billionth of a second. That's the scale – an attosecond – at which scientists seek to image and control electronic motion in matter. Its natural time scale.

The principle of science was the focus of a Sunday (Feb. 17) symposium during the annual meeting of the American Association for the Advancement of Science. University of Nebraska-Lincoln Physicist Anthony Starace was among the speakers, presenting "High-Order Harmonic Generation, Attosecond Science and Control of ."

Starace, a George Holmes University Professor of Physics at UNL, reviewed current theoretical understanding of the "new frontier" of high-order harmonic generation and discussed the prospects for achieving the goals of attosecond science.

"Because electrons move on a scale of Angstroms (one ten-billionth of a meter), light pulses used to illuminate this motion must have high energies so that their de Broglie wavelength is sufficiently small to be able to resolve (or image) the electron motion," Starace said. "Also, because electrons move so fast, light pulses must have durations that are shorter than the typical time scale for electron motion."

De Broglie waves, a theory of , indicate how a wavelength is inversely proportional to the momentum of a particle.

Attosecond pulses are becoming the preferred future tools for imaging, visualizing and even controlling electrons in matter in their natural time scale. Attosecond research could eventually open new applications in a wide range of fields including nanotechnology and life sciences, based on the ultimate visualization and control of the of the electron.

Attosecond science evolved from advances in modern laser technology that allow generation of ultra-short light pulses, or high-order harmonic generation – Starace's area of expertise.

Starace joined seven other scientists to discuss "Attosecond Science in Chemical, , and Energy Science." The AAAS annual meeting was Feb. 14-18 in Boston.

Explore further: Team invents microscopic sonic screwdriver

Related Stories

Flashes of light out of the mirror

Jun 12, 2012

(Phys.org) -- A team of the Laboratory of Attosecond physics at the Max Planck Institute of Quantum Optics developed an alternative way of generating attosecond flashes of light. 

Scientists track electrons in molecules

Jun 13, 2010

(PhysOrg.com) -- Physicists in Europe have successfully glimpsed the motion of electrons in molecules. The results are a major boon for the research world. Knowing how electrons move within molecules will ...

Recommended for you

Researchers prove magnetism can control heat, sound

May 28, 2015

Phonons—the elemental particles that transmit both heat and sound—have magnetic properties, according to a landmark study supported by Ohio Supercomputer Center (OSC) services and recently published by ...

How researchers listen for gravitational waves

May 28, 2015

A century ago, Albert Einstein postulated the existence of gravitational waves in his General Theory of Relativity. But until now, these distortions of space-time have remained stubbornly hidden from direct ...

What's fair?: New theory on income inequality

May 27, 2015

The increasing inequality in income and wealth in recent years, together with excessive pay packages of CEOs in the U.S. and abroad, is of growing concern, especially to policy makers. Income inequality was ...

Scientists one step closer to mimicking gamma-ray bursts

May 27, 2015

Using ever more energetic lasers, Lawrence Livermore researchers have produced a record high number of electron-positron pairs, opening exciting opportunities to study extreme astrophysical processes, such ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.