Study finds nitrogen pollution a growing problem in China

Feb 21, 2013 by Bob Yirka report
Credit: Alfred Palmer/Wikipedia

(Phys.org)—A team of researchers with members from several countries around the world, and led by Chinese agriculturalist Fusuo Zhang has found that nitrogen deposition over China has increased by over 60 percent over the past 30 years, leading to widespread environmental damage. In their paper published in the journal Nature, the team describes how nitrogen pollutants such as ammonia and nitrogen oxides are converted to ammonium and nitrates which then fall to Earth as part of natural precipitation. The result, they say, is the widespread deposition of nitrogen pollutants across large swaths of the country.

Nitrogen pollutants get into the air through two main human processes: manufacturing and farming. A variety of result from making things, including electricity through burning coal and power to run automobiles. The other main avenue is via fertilizer applied to crops that contains large amounts of . Both wind up in the air and then fall to the ground when it rains or snows.

The research team looked at data from 270 monitoring facilities located around the country and found that over the years 1980 to 2010, the amount of nitrogen found in precipitation samples increased by 8 kilograms per hectare per year, which translates to a whopping 60 percent rise. That precipitation, in the form of rain, sleet, ice or snow falls everywhere of course, including on the leaves of plants, which the researchers say, absorb more nitrogen when more is present. Wood based plants and those of a herbaceous nature, were, the team found, absorbing up to 33 percent more nitrogen in 2010 than they were in 1980. Also, agricultural plants such as maize, rice and wheat were found to be absorbing approximately 16 percent more. Many plants grow bigger or faster as a result, including algae, though all have a tipping point and will die once a certain level is reached.

The team also found that the nature of the pollutants has been changing as well. In 2010, for example, they report, about a third of all nitrogen depositions were —the rest were ammoniums. In 1980, only 17 percent of depositions were nitrates. This means that as China's economy grows, nitrogen pollution from manufacturing and driving cars is growing faster than it is from agricultural practices—either way the result is excess amounts of nitrogen causing damage to ecosystems.

The problem of nitrogen is not restricted to just China, of course, its damaging effects can be seen in both advanced and developing countries and those who study its impact say it's a problem that needs to be taken more seriously and dealt with before it becomes unmanageable.

Explore further: Selective logging takes its toll on mammals, amphibians

More information: Enhanced nitrogen deposition over China, Nature (2013) doi:10.1038/nature11917

Abstract
China is experiencing intense air pollution caused in large part by anthropogenic emissions of reactive nitrogen. These emissions result in the deposition of atmospheric nitrogen (N) in terrestrial and aquatic ecosystems, with implications for human and ecosystem health, greenhouse gas balances and biological diversity. However, information on the magnitude and environmental impact of N deposition in China is limited. Here we use nationwide data sets on bulk N deposition, plant foliar N and crop N uptake (from long-term unfertilized soils) to evaluate N deposition dynamics and their effect on ecosystems across China between 1980 and 2010. We find that the average annual bulk deposition of N increased by approximately 8 kilograms of nitrogen per hectare (P < 0.001) between the 1980s (13.2 kilograms of nitrogen per hectare) and the 2000s (21.1 kilograms of nitrogen per hectare). Nitrogen deposition rates in the industrialized and agriculturally intensified regions of China are as high as the peak levels of deposition in northwestern Europe in the 1980s6, before the introduction of mitigation measures. Nitrogen from ammonium (NH4+) is the dominant form of N in bulk deposition, but the rate of increase is largest for deposition of N from nitrate (NO3−), in agreement with decreased ratios of NH3 to NOx emissions since 1980. We also find that the impact of N deposition on Chinese ecosystems includes significantly increased plant foliar N concentrations in natural and semi-natural (that is, non-agricultural) ecosystems and increased crop N uptake from long-term-unfertilized croplands. China and other economies are facing a continuing challenge to reduce emissions of reactive nitrogen, N deposition and their negative effects on human health and the environment.

Press release

Related Stories

Put more nitrogen into milk, not manure

May 28, 2010

The more efficient dairy farmers are in managing nitrogen, the more milk their cows will produce and the less nitrogen will be wasted in manure and urine, according a study by Agricultural Research Service (ARS) scientists ...

Recommended for you

Heavy metals and hydroelectricity

12 minutes ago

Hydraulic engineering is increasingly relied on for hydroelectricity generation. However, redirecting stream flow can yield unintended consequences. In the August 2014 issue of GSA Today, Donald Rodbell of ...

What's wiping out the Caribbean corals?

55 minutes ago

Here's what we know about white-band disease: It has already killed up to 95 percent of the Caribbean's reef-building elkhorn and staghorn corals, and it's caused by an infectious bacteria that seems to be ...

Selective logging takes its toll on mammals, amphibians

19 hours ago

The selective logging of trees in otherwise intact tropical forests can take a serious toll on the number of animal species living there. Mammals and amphibians are particularly sensitive to the effects of ...

User comments : 3

Adjust slider to filter visible comments by rank

Display comments: newest first

NikFromNYC
2.7 / 5 (7) Feb 21, 2013
The war on plant food expands.
Steven_Anderson
1.8 / 5 (5) Feb 21, 2013
I would be curious to find out over what distances these chemicals travel. If the percentage of these chemicals continue to grow, then what if any othet nations would be effected. Unlike Co2, I suspect these effects are more localized. Can anyone confirm?
VendicarE
3 / 5 (2) Feb 21, 2013
As it should. Man for decades has fixed more nitrogen from the atmosphere than all natural processes on earth that do so.

The result is large scale dead zones in the ocean that are deadly to fish and other aerobic organisms.

"The war on plant food expands." - NikkieTard

http://reddragonr...mp;h=334

http://reddragonr...mp;h=381

http://reddragonr...mp;h=360

Flowers & Power: Algae blooms caused by nutrient runoff are compounding ocean acidity problems

https://communiti...problems