New method for researching understudied malaria-spreading mosquitoes

Feb 28, 2013

Researchers at the Johns Hopkins Malaria Research Institute have developed a new method for studying the complex molecular workings of Anopheles albimanus, an important but less studied spreader of human malaria. An. albimanus carries Plasmodium vivax, the primary cause of malaria in humans in South America and regions outside of Africa. Unlike Anopheles gambiae, the genome of the An. albimanus mosquito has not been sequenced and since these two species are evolutionarily divergent, the genome sequence of An. gambiae cannot serve as an appropriate reference. The researcher's findings were published online in the journal Molecular & Cellular Proteomics.

"Technologies and platforms are needed to bridge the scientific gaps that could eventually spur the development of novel interventions to combat all human malarias," said study author, Rhoel Dinglasan, PhD, MPH, an assistant professor with the W. Harry Feinstone Department of Molecular Microbiology and Immunology at the Johns Hopkins Bloomberg School of Public Health. "To our knowledge, no approaches have been published that address this issue."

For the study, Dinglasan and his colleagues developed a method to compare proteins of the midgut of An. albimanus and An. gambiae. The mosquito midgut is a critical stage in the lifecycle of the malaria parasite and in the transmission of malaria to people. For An. albimanus, the researchers developed a seamless, integrated transcriptomic-to-proteomic approach involving assembly of the An. albimanus midgut transcriptome followed by acquisition of the luminal midgut microvilli proteome.

Dinglasan added, "This comparative proteomic analysis of the midgut brush borders of two important malaria vectors, An. gambiae and An. albimanus, which we envision will be one of many comparative studies, will help researchers develop new mosquito-based targets for drugs, vaccines or other interventions that would theoretically work in blocking both P. falciparum and P. vivax."

Malaria sickens more than 250 million people worldwide resulting in over 800,000 deaths, mostly African children.

Explore further: Researchers uncover secrets of internal cell fine-tuning

More information: "A Bioinformatics Approach for Integrated Transcriptomic and Proteomic Comparative Analyses of Model and Non-sequenced Anopheline Vectors of Human Malaria Parasites" Molecular & Cellular Proteomics, 2013.

add to favorites email to friend print save as pdf

Related Stories

Malaria researchers identify new mosquito virus

Aug 22, 2008

Researchers at the Johns Hopkins Bloomberg School of Public Health's Malaria Research Institute have identified a previously unknown virus that is infectious to Anopheles gambiae—the mosquito primarily respon ...

Malaria immunity trigger found for multiple mosquito species

Mar 13, 2009

(PhysOrg.com) -- Researchers at the Johns Hopkins Bloomberg School of Public Health have for the first time identified a molecular pathway that triggers an immune response in multiple mosquito species capable of stopping ...

Mosquito genetics may offer clues to malaria control

Oct 05, 2012

An African mosquito species with a deadly capacity to transmit malaria has a perplexing evolutionary history, according to discovery by researchers at the Fralin Life Science Institute at Virginia Tech.

Recommended for you

Researchers uncover secrets of internal cell fine-tuning

7 hours ago

New research from scientists at the University of Kent has shown for the first time how the structures inside cells are regulated – a breakthrough that could have a major impact on cancer therapy development.

Microscopic rowing—without a cox

8 hours ago

Many different types of cell, including sperm, bacteria and algae, propel themselves using whip-like appendages known as flagella. These protrusions, about one-hundredth of a millimetre long, function like ...

Illuminating the dark side of the genome

13 hours ago

Almost 50 percent of our genome is made up of highly repetitive DNA, which makes it very difficult to be analysed. In fact, repeats are discarded in most genome-wide studies and thus, insights into this part ...

User comments : 0