Enhanced light-harvesting in quantum dot-metal-organic frameworks

February 26, 2013
Enhanced light-harvesting in quantum dot: Metal-organic frameworks
A schematic of directional energy (exciton) migration in the MOF, along with the porphyrin building-blocks of the MOF, is shown.

Center for Nanoscale Materials (CNM) users from Northwestern University, working together with the Nanophotonics Group at the Argonne National Laboratory, report the functionalization of porphyrin-based metal-organic frameworks (MOFs) with CdSe/ZnS core/shell quantum dots (QDs) for the enhancement of light harvesting via energy transfer from the QDs to the MOFs. This work paves the road for the development of efficient light harvesting complexes for solar energy conversion.

Because of their efficient energy-transport properties, porphyrin-based MOFs are attractive compounds for solar photochemistry applications. However, their absorption bands provide limited coverage in the visible spectral range for light-harvesting applications. The broad of the QDs in the visible region offers greater coverage of the by QD-MOF hybrid structures. Time-resolved emission studies at CNM show that photoexcitation of the QDs is followed by energy transfer to the MOFs with efficiencies of more than 80%.

Enhanced light-harvesting in quantum dot: Metal-organic frameworks
Schematic of QD sensitization and energy transfer to the MOFs; QDs are 5-6 nm and the interporphyrin spacing is about 1 nm.

This sensitization approach can result in a >50% increase in the number of photons harvested by a single monolayer MOF structure with a monolayer of QDs on the MOF surface. Porphyrin molecules with different substituents were used to alter the degree of structural anisotropy in the MOF, in order to preferentially increase the anisotropy in electronic coupling between porphyrins in specific directions, so as to produce anisotropic energy migration. Theoretical evaluation of the coupling constants also was performed.

Explore further: 'Seeding' the next generation of smart materials

More information: S. Jin et al., Energy Transfer from Quantum Dots to Metal-Organic Frameworks for Enhanced Light Harvesting, J. Am. Chem. Soc. 135, 955 (2013).

H.-J. Son et al., Light Harvesting and Ultrafast Energy Migration in Porphyrin-Based Metal-Organic Frameworks, J. Am. Chem. Soc. 135, 862 (2013).

Related Stories

'Seeding' the next generation of smart materials

March 18, 2011

(PhysOrg.com) -- Scientists at CSIRO have developed a simple but effective technique for growing and adding value to an exciting new group of smart materials which could be used in areas such as optical sensing and drug storage ...

MOFs materials special review issue

February 22, 2012

New analyses of more than 4,000 scientific studies have concluded that a family of "miracle materials" called MOFs have a bright future in products and technologies — ranging from the fuel tanks in hydrogen-powered cars ...

Robust approach for preparing polymer-coated quantum dots

March 1, 2012

Quantum dots (QDs) are tiny crystals of semiconducting material that produce fluorescence. The color or the wavelength of the fluorescence is dependent on the size, shape and composition of QDs. Larger QDs tend to emit light ...

Recommended for you

Electrical circuit made of gel can repair itself

August 25, 2015

(Phys.org)—Scientists have fabricated a flexible electrical circuit that, when cut into two pieces, can repair itself and fully restore its original conductivity. The circuit is made of a new gel that possesses a combination ...

Biological tools create nerve-like polymer network

August 24, 2015

Using a succession of biological mechanisms, Sandia National Laboratories researchers have created linkages of polymer nanotubes that resemble the structure of a nerve, with many out-thrust filaments poised to gather or send ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.