Life's tiniest architects pinpointed

Feb 21, 2013

If a genome is the blueprint for life, then the chief architects are tiny slices of genetic material that orchestrate how we are assembled and function, Yale School of Medicine researchers report Feb. 21 in the journal Developmental Cell.

The study pinpoints the molecular regulators of epigenetics – the process by which unchanging genes along our DNA are switched on and off at precisely right time and place.

"Our genome is like a landscape with lakes, mountains, and rivers, but it is not yet a community or a city full of buildings," said Haifan Lin, director of the Yale Stem Cell Center and senior author of the study. "What this system does is decide where and when to send out the masons, carpenters, and electricians to build a city or a community."

In the past 20 years, scientists have discovered that some proteins, called epigenetic factors, traverse the static genome and turn the genes on or off. The staggering number of potential combinations of active and inactive genes explains why a relatively small number of genes can carry out such a wide range of functions. But what guides these epigenetic factors to their target? The answer, the Yale team has found, is specialized RNAs called piRNAs.

In the latest study, the Yale team discovered that piRNAs guide epigenetic factors to numerous sites throughout the genome of the fruit fly , where these switches work to turn genes on or off. The dramatic change in found illustrated piRNAs key role in coordinating .

"This is the first major mechanism discovered that controls where epigenetic factors —the gene switches—are to be placed in the genome," Lin said.

Several types of cancers appeared to be triggered when the wrong kinds of piRNAs guide epigenetic factors to activate the wrong genes. Blocking the action of these piRNAs should become a new opportunity to treat cancers, Lin said.

Explore further: Mycologist promotes agarikon as a possibility to counter growing antibiotic resistance

add to favorites email to friend print save as pdf

Related Stories

Diet or DNA: are we fated to be fat?

Mar 15, 2012

(Medical Xpress) -- Marks on the genetic ‘code’ that babies have at birth are different for children who go on to be obese or overweight compared to those who do not, new research from the universities ...

Researchers discover a new role for RNAi

Jun 26, 2012

Organisms employ a fascinating array of strategies to identify and restrain invasive pieces of foreign DNA, such as those introduced by viruses. For example, many viruses produce double-stranded (ds)RNA during their life ...

Recommended for you

YEATS protein potential therapeutic target for cancer

Oct 23, 2014

Federal Express and UPS are no match for the human body when it comes to distribution. There exists in cancer biology an impressive packaging and delivery system that influences whether your body will develop cancer or not.

Precise and programmable biological circuits

Oct 23, 2014

A team led by ETH professor Yaakov Benenson has developed several new components for biological circuits. These components are key building blocks for constructing precisely functioning and programmable bio-computers.

User comments : 0