Life's tiniest architects pinpointed

February 21, 2013

If a genome is the blueprint for life, then the chief architects are tiny slices of genetic material that orchestrate how we are assembled and function, Yale School of Medicine researchers report Feb. 21 in the journal Developmental Cell.

The study pinpoints the molecular regulators of epigenetics – the process by which unchanging genes along our DNA are switched on and off at precisely right time and place.

"Our genome is like a landscape with lakes, mountains, and rivers, but it is not yet a community or a city full of buildings," said Haifan Lin, director of the Yale Stem Cell Center and senior author of the study. "What this system does is decide where and when to send out the masons, carpenters, and electricians to build a city or a community."

In the past 20 years, scientists have discovered that some proteins, called epigenetic factors, traverse the static genome and turn the genes on or off. The staggering number of potential combinations of active and inactive genes explains why a relatively small number of genes can carry out such a wide range of functions. But what guides these epigenetic factors to their target? The answer, the Yale team has found, is specialized RNAs called piRNAs.

In the latest study, the Yale team discovered that piRNAs guide epigenetic factors to numerous sites throughout the genome of the fruit fly , where these switches work to turn genes on or off. The dramatic change in found illustrated piRNAs key role in coordinating .

"This is the first major mechanism discovered that controls where epigenetic factors —the gene switches—are to be placed in the genome," Lin said.

Several types of cancers appeared to be triggered when the wrong kinds of piRNAs guide epigenetic factors to activate the wrong genes. Blocking the action of these piRNAs should become a new opportunity to treat cancers, Lin said.

Explore further: Scientists find that genes have help in determining our traits

Related Stories

Diet or DNA: are we fated to be fat?

March 15, 2012

(Medical Xpress) -- Marks on the genetic ‘code’ that babies have at birth are different for children who go on to be obese or overweight compared to those who do not, new research from the universities of Newcastle ...

Researchers discover a new role for RNAi

June 26, 2012

Organisms employ a fascinating array of strategies to identify and restrain invasive pieces of foreign DNA, such as those introduced by viruses. For example, many viruses produce double-stranded (ds)RNA during their life ...

Recommended for you

Mice can smell oxygen

December 2, 2016

The genome of mice harbours more than 1000 odorant receptor genes, which enable them to smell myriad odours in their surroundings. Researchers at the Max Planck Research Unit for Neurogenetics in Frankfurt, the University ...

How single-celled organisms navigate to oxygen

December 2, 2016

A team of researchers has discovered that tiny clusters of single-celled organisms that inhabit the world's oceans and lakes, are capable of navigating their way to oxygen. Writing in e-Life scientists at the University ...

Natural nomads, leatherback turtles opt to stay in place

December 2, 2016

Endangered leatherback sea turtles are known for their open-ocean migratory nature and nomadic foraging habits – traveling thousands of miles. But a Cornell naturalist and his colleagues have discovered an area along the ...

Neural stem cells serve as RNA highways too

December 1, 2016

Duke University scientists have caught the first glimpse of molecules shuttling along a sort of highway running the length of neural stem cells, which are crucial to the development of new neurons.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.