Key protein revealed as trigger for stem cell development

Feb 07, 2013

A natural trigger that enables stem cells to become any cell-type in the body has been discovered by scientists.

Researchers have identified a protein that kick-starts the process by which stem cells can develop to into different cells in the body, for instance liver or .

Their discovery could help scientists improve techniques enabling them to turn stem cells into other cell types in the laboratory. These could then be used to test drugs or help create therapies for degenerative conditions such as Parkinson's disease, , and .

Scientists from the Medical Research Council Centre for Regenerative Medicine at the University of Edinburgh, who studied in mice, also developed a technique enabling them to highlight the presence of the key protein – Tcf15 – in the cells.

This means that researchers can identify which cells have the protein and watch how it affects stem cells in real time to gain a better understanding of how it works.

The study, published in the journal Cell Reports, was funded by the Wellcome Trust and the Biotechnology and Biological Sciences Research Council,

Dr Sally Lowell, from the MRC Centre for Regenerative Medicine at the University of Edinburgh, said: "This gives us better insight into the crucially important first step stem cells take to differentiate into other cell types. Understanding how and when this happens could help to improve the way in which we are able to control this process."

Researchers pinpointed the by looking at how some stem cells are naturally prevented from specialising into other cell types.

They found two sets of proteins, one of which binds to the other blocking them from carrying out their various functions.

They were then able to screen the blocked proteins to find out which ones would enable stem cells to differentiate.

Explore further: How a molecular Superman protects the genome from damage

add to favorites email to friend print save as pdf

Related Stories

Stem cells reverse disease in a model of Parkinson's disease

May 16, 2011

In a new study to be published in the Journal of Clinical Investigation, researchers compared the ability of cells derived from different types of human stem cell to reverse disease in a rat model of Parkinson disease and id ...

New way to weed out problem stem cells, making therapy safer

Sep 27, 2012

Mayo Clinic researchers have found a way to detect and eliminate potentially troublemaking stem cells to make stem cell therapy safer. Induced Pluripotent Stem cells, also known as iPS cells, are bioengineered from adult ...

Recommended for you

Structure of an iron-transport protein revealed

4 hours ago

For the first time, the three dimensional structure of the protein that is essential for iron import into cells, has been elucidated. Biochemists of the University of Zurich have paved the way towards a better ...

Over-organizing repair cells set the stage for fibrosis

5 hours ago

The excessive activity of repair cells in the early stages of tissue recovery sets the stage for fibrosis by priming the activation of an important growth factor, according to a study in The Journal of Ce ...

Cell architecture: Finding common ground

Oct 16, 2014

When it comes to cellular architecture, function follows form. Plant cells contain a dynamic cytoskeleton which is responsible for directing cell growth, development, movement, and division. So over time, changes in the cytoskeleton ...

User comments : 0