Spotting the invisible cracks in wind turbines

Feb 12, 2013

(Phys.org)—A significant percentage of the costs of wind energy is due to wind turbine failures, as components are weakened under turbulent air flow conditions and need to be replaced. The challenge for the team was to find a method for detecting fatigue in the wind turbines' parts without having to remove each of the components and while the turbine is in operation.

Until now, standard methods have relied on so-called spectral analysis, which looks at the different frequency response. But these measurements are distorted by the turbulent working conditions. As a result, these detection methods often only detect really major damages, like a crack that covers more than 50 percent of a blade. The authors used a simple experimental set-up of undamaged and damaged beam structures and exposed them to excitations containing an element of interfering vibrations, or noise, made by different turbulent .

The analytical method they developed enabled them to distinguish between dynamics attributed to mechanical properties such as stiffness of the blade and those attributed to interfering noise, such as turbulences. The authors demonstrated that they were able to precisely detect the changing mechanical properties of the beam material based on an analysis of the . Ultimately, when the method is further refined, this could be used to identify material fatigue or untightened screws, for example, and be applied to more complex structures such as automotive or airplane parts.

Explore further: Energy transition project moves into its second phase

More information: European Physical Journal B 86: 3, DOI: 10.1140/epjb/e2012-30472-8

add to favorites email to friend print save as pdf

Related Stories

Noise research to combat 'wind turbine syndrome'

Jun 01, 2011

(PhysOrg.com) -- University of Adelaide acoustics researchers are investigating the causes of wind turbine noise with the aim of making them quieter and solving 'wind turbine syndrome'.

Enhancing the efficiency of wind turbines

Nov 22, 2010

A milestone in the history of renewable energy occurred in the year 2008 when more new wind-turbine power generation capacity was added in the U.S. than new coal-fired power generation. The costs of producing power with wind ...

The way has been cleared for mega wind turbines of 20 MW

Apr 15, 2011

The present largest wind turbines have a capacity of 5-6 MW. Following five years of research at the joint European project UpWind, led by Risoe National Laboratory for Sustainable Energy, the Technical University of Denmark ...

Recommended for you

Energy transition project moves into its second phase

20 minutes ago

Siemens is studying new concepts for optimizing the cost-effectiveness and technical performance of energy systems with distributed and fluctuating electricity production. The associated IRENE research project ...

Smart data increases the efficiency of wind farms

2 hours ago

Siemens monitors thousands of wind power plants around the world to operate them as efficiently as possible. The company recently opened a remote diagnostics center in Brande, Denmark, where sensor data from ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.