Direct infrared image of an arm in disk demonstrates transition to planet formation

February 8, 2013
Figure 1: Subaru Telescope's near-infrared (1.6 μm) image of the protoplanetary disk around the young star J 1604. A black circular mask covers the bright, saturated light from the central star. The gauges for distance are in astronomical units and arc seconds. (Abbreviated as AU, an astronomical unit is the distance between the Sun and Earth. Abbreviated as arcsec, an arc second is 1/3600 of a degree.) Prominent features include the hole (white dotted line) in the disk; the arm extending over the hole (on the right); and the asymmetric dip (on the left). Credit: The Graduate University for Advanced Studies and the National Astronomical Observatory of Japan

(—An international team of astronomers led by Satoshi Mayama (The Graduate University for Advanced Studies, Japan) and Ruobing Dong (Princeton University) has made observations with the Subaru Telescope and captured the first vivid infrared image of a curved arm of dust extending over a hole on a disk around a young star—2MASS J16042165-2130284 (J 1604). This feature indicates the probable existence of unseen planets within the hole. The image shows the dynamic environment in which planets may be born and gives information about constraints on the distance at which planets can form from a central star.

Research over the past two decades has confirmed that new stars are often surrounded by disks of and dust ("protoplanetary disks") from which planets form. A central star enters an active phase of planet building when it is a few million years old. During this period, newborn planets may deplete some of the gas and dust in the disk, producing a hole within it, although the outer ring remains. However, the debatable origins of the hole require to confirm this process. Direct imaging of the structures that indicate planet building inside of the hole have rarely occurred—until now. The current team's research, a part of the Strategic Explorations of and Disks with Subaru (SEEDS) Project is filling in the observational gaps in this relatively unexplored area.

The team used the high-resolution HiCIAO (High Contrast Instrument for the Subaru Next Generation ) mounted on the 8.2-m in April 2012 to observe the young star J 1604, which has a mass similar to the Sun's; it is located in the Upper Scorpius star-forming region at a distance of 470 light years and is estimated to be 3.7 million years (Myr) old. The researchers captured a very high-resolution (0.07 arc seconds) near-infrared image of its , which shows that scatter the light from the central star. The disk has some interesting features: a large hole with an asymmetric dip in the disk and a curved arm extending over the hole. This is the first vivid of such an arm in observations of the disks around young stars, and it also marks the first detection of an arm of dust that could lead to the formation of Earth-like rocky planets. The arm emerges from the inner edge of the western side of the disk, begins to extend inward, and then curves to the northeast. Based on their detailed modeling, the team estimates that the radius of the disk's inner edge is 63 AU; its inclination is 10 degrees; and the length of the arm is 50 AU. Their measurements of the surface brightness of the gap show that it drops by a factor of five when compared with the rest of the disk.

Figure 2: Artist's rendition of the protoplanetary disk around J 1604. Credit: The Graduate University for Advanced Studies and the National Astronomical Observatory of Japan

Characteristics of the hole in the disk and the arm over it indicate the possible presence of unseen planets within the hole. The width and depth of the observed hole conform to the size of a hole that planets would create according to current theories of planet formation. The researchers' calculations suggest that the hole in this disk might mark the presence of at least one planet at 40 – 50 AU from the central star. Current theories also predict that the gravity of a planet could produce a curved arm in a disk. Because the shape of the arm in the Subaru Telescope image shared features in line theoretical predictions, the team concluded that unseen planets could explain its structure. Overall, these findings identify constraints on planet formation at certain distances from the .

The high-resolution image from these scientists' research at Subaru Telescope clearly illustrates the dynamic context in which planets are born. Providing these kinds of detailed images of a face-on disk object becomes a perfect laboratory for astronomers to test and refine their theoretical models of planet formation.

Explore further: First Direct Imaging of a Young Binary System

More information: Mayama, S. et al. December 2012, Astrophysical Journal Letter 760, L26, "Subaru Imaging of Asymmetric Features in a Transitional Disk in Upper Scorpius".

Related Stories

First Direct Imaging of a Young Binary System

December 15, 2009

( -- A team of astronomers from The Graduate University for Advanced Studies, the National Astronomical Observatory of Japan, and other universities have captured the first direct image of a young binary star ...

Spiral arms hint at the presence of planets

October 19, 2011

A new image of the disk of gas and dust around a sun-like star has spiral-arm-like structures. These features may provide clues to the presence of embedded but as-yet-unseen planets.

Dust grains highlight the path to planet formation

November 28, 2012

(—An international team of researchers from the National Astronomical Observatory of Japan (NAOJ) and the Japanese universities of Kobe, Hyogo, and Saitama used the Subaru Telescope to capture a clear image of ...

Spiral structure of disk may reveal planets

December 20, 2012

(—An international team of astronomers has used HiCIAO (High Contrast Instrument for the Subaru Next Generation Optics) to observe a disk around the young star SAO 206462. They succeeded in capturing clear, detailed ...

Recommended for you

Footprints of baby planets in a gas disk

May 24, 2016

A new analysis of the ALMA data for a young star HL Tauri provides yet more firm evidence of baby planets around the star. Researchers uncovered two gaps in the gas disk around HL Tauri. The locations of these gaps in the ...

Hubble finds clues to the birth of supermassive black holes

May 24, 2016

Astrophysicists have taken a major step forward in understanding how supermassive black holes formed. Using data from Hubble and two other space telescopes, Italian researchers have found the best evidence yet for the seeds ...

Potential habitats for early life on Mars

May 24, 2016

Recently discovered evidence of carbonates beneath the surface of Mars points to a warmer and wetter environment in that planet's past. The presence of liquid water could have fostered the emergence of life.


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.