Impact craters may have been cradles of life

Feb 26, 2013
Impact craters may have been cradles of life

(Phys.org)—Even comparatively small meteorite impact craters may have played a key role in the origin and evolution of early life on Earth, according to a researcher at The University of Western Australia.

Geologist Martin Schmieder, a research associate in UWA's School of Earth and Environment, said study results suggested that heat generated by an took at least several hundred thousand years to dissipate.

Dr Schmieder, the lead author of an article published this month in the prestigious journal , said as cooled, they provided an ideal environment for to thrive.

He and fellow researcher Dr Fred Jourdan, Director of the Western Australian Argon Isotope Facility at Curtin University, are experts in the study of rocks and minerals from craters produced by the hypervelocity impact of incoming asteroids and comets (termed meteorites once they have hit the Earth's surface).  Impact craters are common features in the solar system.

"As a case study, we analysed impact-molten rock samples from the 23km-diameter and 76-million-year-old Lappajärvi crater in Finland, and were quite surprised by the results," Dr Schmieder said.

Temperatures during an impact event can reach several thousand degrees Celsius, capable of melting portions of the target rock.  Smaller to medium-size impact craters less than 30km across represent the largest crater population on Earth and other , compared with giant impact basins such as those on the Moon that are visible to the naked eye on a clear night. 

Earlier estimates for the duration of cooling in smaller impact craters were based on theoretical simulations and suggested a relatively short cool-down period of about 10,000 years after the impact.  Drs Schmieder and Jourdan used the so-called argon-argon dating technique based on the natural radioactive decay of potassium to argon to measure the age of different minerals formed on impact.

"Our new argon-argon data tell us that the Lappajärvi crater did not cool down as rapidly as expected but within at least several 100,000 years, and perhaps more than a million years," Dr Jourdan said.

"Cooling impact craters are hot natural laboratories in which hot hydrothermal fluids circulate.  We think they provided ideal starting conditions for the origin and evolution of microbial on early Earth more than two billion years ago."

Dr Schmieder said of the 185 meteorite impact structures recognised on Earth, 29 were in Australia, and new impact sites were discovered worldwide nearly every year.

"Although usually associated with massive havoc and destruction, asteroid impacts also acted as extraterrestrial boosters of life in the past," he said.

"A prime example is the giant Chicxulub impact that helped wipe out the dinosaurs 66 million years ago and eventually paved the way for mammals and mankind."

The researchers believe the large Acraman impact in South Australia more than 500 million years earlier probably had a major influence on the evolutionary radiation of the first multicellular life forms during the Ediacaran, a geologic time period named after the fossil-bearing Ediacara Hills in Australia's Flinders Ranges, when complex life started to blossom.

Drs Schmieder and Jourdan are currently carrying out a government-funded global research project on a number of terrestrial impact craters, some of them located in Australia.

"Large meteorite impacts are outstanding and fascinating geologic events, and we will soon investigate other ancient impact craters on all continents to more deeply explore their geologic age and potential role in the history of life on Earth and possibly Mars," Dr Schmieder said.

Explore further: Computer simulation suggests early Earth bombarded by asteroids and comets

More information: www.sciencedirect.com/science/… ii/S0016703713001105

Related Stories

Asteroid sites hint at life on Mars

Apr 16, 2012

(Phys.org) -- Craters made by asteroid impacts may be the best place to look for signs of life on other planets, a study suggests.

Researchers catalog more than 635,000 Martian craters

Jun 11, 2012

It's no secret that Mars is a beaten and battered planet -- astronomers have been peering for centuries at the violent impact craters created by cosmic buckshot pounding its surface over billions of years. ...

Researchers discover new impact crater in the Arctic

Aug 08, 2012

(Phys.org) -- Researchers from the University of Saskatchewan and the Geological Survey of Canada (GSC) have discovered a massive meteor impact from millions of years ago in Canada’s western Arctic.

What craters on the Moon teach us about Earth

Jan 10, 2013

Some questions about our own planet are best answered by looking someplace else entirely… in the case of impact craters and when, how and how often they were formed, that someplace can be found shining ...

Recommended for you

Rosetta measures comet's temperature

9 hours ago

(Phys.org) —ESA's Rosetta spacecraft has made its first temperature measurements of its target comet, finding that it is too hot to be covered in ice and must instead have a dark, dusty crust.

How Rosetta arrives at a comet

11 hours ago

After travelling nearly 6.4 billion kilometres through the Solar System, ESA's Rosetta is closing in on its target. But how does a spacecraft actually arrive at a comet?

Lunar occultation of Saturn

12 hours ago

On the night of Monday August 4, mainland Australia will see Saturn disappear behind the moon. It's the third time this year that the moon and Saturn will perfectly line up, as viewed from our part of the ...

User comments : 3

Adjust slider to filter visible comments by rank

Display comments: newest first

Anda
1 / 5 (3) Feb 26, 2013
Maybe, maybe not, but their arguments are not very convincing...
And their "prime" example of the impact that helped wipe out the dinosaurs?
mammals didn't evolve in the impact site, they were just survivors in other parts of the earth!
Mmmmmmm... 1 star
Torbjorn_Larsson_OM
5 / 5 (2) Feb 26, 2013
Wow! Earlier estimates on hydrothermal systems have been in the thousands of years, IIRC. Admittedly, likely smaller impactors, but still.

Hundreds of thousands of years are both competitive with today's vent lifetimes (maximum some hundred thousand years) and enough for life (RNA replicator strands crystalizes in ~ 30 000 years).

On Earth, the ocean vents were probably the origin, since cells could infect new vents until they were self-reliant on external redox and carbon sources. But on other planets and moons, these observations are definitely increasing the likelihood of life, however temporary.

@Anda: I think you misinterpret their description. They wanted to reimage impactors as "boosters of life", not always destroyers.

Personally, I don't think the Chixculub originated mass extinction was a good example of "booster", but they didn't connect it directly to their research. Yes, 1 star for that all the same.
Shootist
1 / 5 (2) Feb 26, 2013
Maybe, maybe not, but their arguments are not very convincing...
And their "prime" example of the impact that helped wipe out the dinosaurs?
mammals didn't evolve in the impact site, they were just survivors in other parts of the earth!
Mmmmmmm... 1 star


It is obvious you need a primer on impacts. http://www.lpi.us...-954.pdf