Imaging unveils temperature distribution inside living cells

Feb 01, 2013

A research team in Japan exploring the functions of messenger ribonucleic acid (mRNA) – a molecule that encodes the chemical blueprint for protein synthesis – has discovered a way to take a close look at the temperature distribution inside living cells. This discovery may lead to a better understanding of diseases, such as cancer, which generate extraordinary intracellular heat.

This breakthrough is the first time anyone has been able to show the actual temperature distribution inside living cells. The team will present its findings at the 57th Annual Meeting of the Biophysical Society (BPS), held Feb. 2-6, 2013, in Philadelphia, Pa.

Conventional temperature imaging methods lack and sensitivity, which means these methods are incapable of imaging extremely tiny temperature differences inside living cells. To overcome these issues, the team developed a new imaging method that combines a highly sensitive thermometer with an incredibly accurate detection technique, enabling the creation of detailed intracellular temperature maps.

"Our imaging method allows us to clearly see the temperature inside living cells, and we found that the temperature differs greatly depending on the location in the cell," says Kohki Okabe, an assistant professor at the University of Tokyo's Laboratory of Bioanalytical Chemistry, Graduate School of Pharmaceutical Science. "We discovered that the is related to the various stages of the cell cycle."

This research provides a novel point of view: Temperature not only regulates , but it actually contributes to cellular functions.

"By incorporating cellular into the analysis of any kind of cellular event, we can achieve a deeper understanding of cellular functions," Okabe explains. "It is our hope that by using this method of temperature imaging, the pathogenesis of diseases known to generate significant heat within cells, such as cancer, can be clarified. We believe this may help lead to future cures."

Next, Okabe and colleagues plan to explore how temperature contributes to in even greater detail, as well as investigating differences in the intracellular temperatures of various living cells.

Explore further: Cell division speed influences gene architecture

More information: Presentation #1033-Plat, "Imaging of temperature distribution in a living cell," will take place at 11:45 a.m. on Monday, Feb. 4, 2013, in the Pennsylvania Convention Center, Room 113AB. ABSTRACT: tinyurl.com/b6dnae6

Related Stories

Recommended for you

Cell division speed influences gene architecture

Apr 23, 2014

Speed-reading is a technique used to read quickly. It involves visual searching for clues to meaning and skipping non-essential words and/ or sentences. Similarly to humans, biological systems are sometimes ...

Secret life of cells revealed with new technique

Apr 23, 2014

(Phys.org) —A new technique that allows researchers to conduct experiments more rapidly and accurately is giving insights into the workings of proteins important in heart and muscle diseases.

In the 'slime jungle' height matters

Apr 23, 2014

(Phys.org) —In communities of microbes, akin to 'slime jungles', cells evolve not just to grow faster than their rivals but also to push themselves to the surface of colonies where they gain the best access ...

Queuing theory helps physicist understand protein recycling

Apr 22, 2014

We've all waited in line and most of us have gotten stuck in a check-out line longer than we would like. For Will Mather, assistant professor of physics and an instructor with the College of Science's Integrated Science Curriculum, ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

RobL
not rated yet Feb 02, 2013
The Electromagnetic distribution and production studied at a celular level of resolution is interesting indeed.

More news stories

New breast cancer imaging method promising

The new PAMmography method for imaging breast cancer developed by the University of Twente's MIRA research institute and the Medisch Spectrum Twente hospital appears to be a promising new method that could ...

Research proves nanobubbles are superstable

The intense research interest in surface nanobubbles arises from their potential applications in microfluidics and the scientific challenge for controlling their fundamental physical properties. One of the ...

Using antineutrinos to monitor nuclear reactors

When monitoring nuclear reactors, the International Atomic Energy Agency has to rely on input given by the operators. In the future, antineutrino detectors may provide an additional option for monitoring. ...