Global warming could corrode shallow reefs sooner than forecast

February 27, 2013
Global warming could corrode shallow reefs sooner than forecast
Corals at Lady Elliott Island.

(Phys.org)—Shallow coral reefs may be even more susceptible to increasing acidity caused by heightened levels of carbon dioxide in the atmosphere and oceans than previously recognised.

In the same way that small increases in global temperature can lead to more extremely hot, record-breaking days, new research reveals small increases in overall ocean acidity can lead to extreme localised changes in ocean pH around shallow coastal reefs and ecosystems.

"Our study shows organisms residing on shallow coral reefs and in other shallow marine ecosystems will be exposed to far more extreme and variable acidity in the future than deeper ocean organisms. This will be caused by a combination of heightened background levels and the natural cycles found in shallow ecosystems," says lead author, Emily Shaw, from the UNSW's Climate Change Research Centre.

"We are beginning to understand how the pH of shallow reef waters can vary dramatically according to tidal situations, seasonal conditions, diurnal cycles and the responses of to each of these. If we continue to add carbon dioxide at our current rate the increased background CO2 will not simply add a little to these extreme events but will have a multiplying affect that will amplify them considerably more."

The scientists used observational data from coral communities on the shallow offshore reef around Lady Elliott Island, , as their baseline. There they looked closely at how certain conditions in concert have a powerful amplifying or diluting impact on carbon dioxide levels at local levels in shallow reefs.

The prime causes of changes in acidity on the reef are through respiration by and tides. CO2 levels are lower during the day when photosynthesis of the in coral takes place and higher at night when respiration occurs. Low tides can increase the magnitude of these changes in CO2 content, while high tides can reduce the CO2 content.

There is also the smaller influence of the seasons caused by variations in temperature and algal and plankton growth through the year.

Under normal conditions, the chemical properties of seawater allow it to buffer the variability caused by these natural seasonal and daily variations in CO2 levels. However, the increase in background CO2 levels reduces the ability of the ocean to buffer what would otherwise be natural changes, leading to an amplification of the CO2 level.

Using the current trajectory of increasing carbon emissions, the researchers estimate we will see the first clear impacts of increasing acidity affect the growth of shallow coral reefs within decades. By 2100, corrosive conditions for aragonite, which is the type of calcium carbonate that corals and some other reef organisms produce, are expected to occur daily in some shallow locations.

"In recognising that extreme changes in pH are likely in the future, it is important that further research is done to examine the biological consequences of short-term exposure to extreme carbon dioxide conditions," says Dr Shaw.

"Too often we talk about climate change impacts in terms of averages - whether it is in terms of temperatures or, in this case changes in pH. As the Western Australian ocean heatwave showed us two years ago when it devastated fish stocks, it can be the extreme end of the spectrum that can cause the most damage, and these damages may be irreversible over our lifetimes in the case of ocean acidification.

"We know that if we continue on our current CO2 emissions trajectory that the ocean will take thousands of years to return to chemical conditions resembling those of today."

Explore further: CO2 hurts reef growth

Related Stories

CO2 hurts reef growth

July 11, 2007

Coral reefs are at risk of going soft, quite literally turning to mush as rising carbon dioxide levels prevent coral from forming tough skeletons, according to UQ research.

Modest CO2 cutbacks may be too little, too late for coral reefs

September 22, 2008

How much carbon dioxide is too much? According to United Nations Framework Convention on Climate Change (UNFCCC) greenhouse gases in the atmosphere need to be stabilized at levels low enough to "prevent dangerous anthropogenic ...

Ocean acidification and coral reefs

June 2, 2011

(PhysOrg.com) -- Natural carbon dioxide (CO2) seeps in Papua New Guinea have given scientists rare insights into what tropical coral reefs could look like if human-induced atmospheric CO2 concentrations continue to rise unabated. ...

Increased acidity not an even test for coral reefs

November 10, 2011

Coral reefs can both positively and negatively influence the acidity of their surrounding seawater. That is the take-home message of two papers recently published in the international journal Global Change Biology, by a group ...

Recommended for you

Drought's lasting impact on forests

July 30, 2015

In the virtual worlds of climate modeling, forests and other vegetation are assumed to bounce back quickly from extreme drought. But that assumption is far off the mark, according to a new study of drought impacts at forest ...

A cataclysmic event of a certain age

July 27, 2015

At the end of the Pleistocene period, approximately 12,800 years ago—give or take a few centuries—a cosmic impact triggered an abrupt cooling episode that earth scientists refer to as the Younger Dryas.

'Carbon sink' detected underneath world's deserts

July 28, 2015

The world's deserts may be storing some of the climate-changing carbon dioxide emitted by human activities, a new study suggests. Massive aquifers underneath deserts could hold more carbon than all the plants on land, according ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.