When it comes to genetic code, researchers prove optimum isn't always best

Feb 19, 2013

Imagine two steel springs identical in look and composition but that perform differently because each was tempered at a different rate.

A team of researchers including a Texas A&M University molecular biologist has shown that concept—that the speed of creation affects performance—applies to how a protein they studied impacts an organism's circadian clock function. This discovery provides new insights into the significance of the for controlling the rates at which critically important proteins are synthesized, and could lead to better understanding of cancers and other diseases.

"Living organisms' inner clocks are like Swiss watches with precisely manufactured spring mechanisms," said Matthew Sachs, a professor in the Texas A&M Department of Biology. "For example, if you fast-temper a critical spring, the watch may be unable to keep time, as opposed to slow-tempering it. It's not just about the composition of the components, such as which alloy is used. It's about the manner in which the components are made. Our research says the genetic code is important for determining both composition and fabrication rate for a central component of the circadian clock, and that the fabrication rate also is critical. And that's essentially a discovery."

The research was selected for Advanced Online Publication (AOP) in the prestigious journal "Nature."

The team, which is led by Yi Liu, a researcher in the Department of Physiology at the University of Texas Southwestern Medical Center, was perplexed when it found a paradoxical result years ago: that optimizing the use of codons (a sequence of three nucleotides that form a unit of genetic code in a DNA or RNA molecule) specifying an essential biological clock component actually abolished the organism's circadian rhythms.

The group's research indicates that the protein in the fungal genus Neurospora they studied, frequency, performs better when the genetic code specifying it has non-optimal codon usage, as is normally found. However, when the genetic code is deliberately altered so that codon usage is optimized, clock function is lost. The reason for this is that non-optimal codon usage slows translation of the genetic code into protein, allotting the frequency protein the necessary time to achieve its optimal protein structure. The team's results also demonstrate that genetic codons do more than simply determine the amino acid sequence of a protein as previously thought: They also affect how much protein can be made as well as the functional quality of that .

"We found that less is more, in many cases," Liu said.

Because many genetic diseases are the result of improperly functioning proteins, Sachs says knowledge about how proteins are made and why they have impaired functions is critical to understanding almost all diseases.

"Understanding gene expression is crucial for understanding cancer and other diseases, because ultimately many of these processes involve either mutations of genes or altered expression of genes," said Sachs, who was asked by Liu to help on the research because of his translational expertise in Neurospora.

Explore further: 500 million year reset for the immune system

More information: www.nature.com/nature/journal/… ull/nature11833.html

Related Stories

Simplifying genetic codes to look back in time

Aug 24, 2012

(Phys.org)— Daisuke Kiga and co-workers at the Department of Computational Intelligence and Systems Science at Tokyo Institute of Technology, together with researchers across Japan, have shown that simpler versions of the ...

Recommended for you

How steroid hormones enable plants to grow

15 hours ago

Plants can adapt extremely quickly to changes in their environment. Hormones, chemical messengers that are activated in direct response to light and temperature stimuli help them achieve this. Plant steroid ...

Surviving the attack of killer microbes

16 hours ago

The ability to find food and avoid predation dictates whether most organisms live to spread their genes to the next generation or die trying. But for some species of microbe, a unique virus changes the rules ...

Histones and the mystery of cell proliferation

16 hours ago

Before cells divide, they create so much genetic material that it must be wound onto spools before the two new cells can split apart. These spools are actually proteins called histones, and they must multiply ...

New discovery: Microbes create dripstones

Aug 18, 2014

According to new research humble, microscopic organisms can create dripstones in caves. This illustrates how biological life can influence the formation of Earth's geology - and the same may be happening ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

Eikka
1 / 5 (1) Feb 19, 2013
non-optimal codon usage slows translation of the genetic code into protein, allotting the frequency protein the necessary time to achieve its optimal protein structure.


Or, the time that it takes to manufacture the protein is directly or indirectly acting as the beat of the clock.

Which is the simpler explaination.

I don't think subtle differences in how fast the protein is being made can have much effect in its shape, except over a treshold speed beyond which the protein will be folded incorrectly and stop functioning alltogether.