When it comes to genetic code, researchers prove optimum isn't always best

February 19, 2013

Imagine two steel springs identical in look and composition but that perform differently because each was tempered at a different rate.

A team of researchers including a Texas A&M University molecular biologist has shown that concept—that the speed of creation affects performance—applies to how a protein they studied impacts an organism's circadian clock function. This discovery provides new insights into the significance of the for controlling the rates at which critically important proteins are synthesized, and could lead to better understanding of cancers and other diseases.

"Living organisms' inner clocks are like Swiss watches with precisely manufactured spring mechanisms," said Matthew Sachs, a professor in the Texas A&M Department of Biology. "For example, if you fast-temper a critical spring, the watch may be unable to keep time, as opposed to slow-tempering it. It's not just about the composition of the components, such as which alloy is used. It's about the manner in which the components are made. Our research says the genetic code is important for determining both composition and fabrication rate for a central component of the circadian clock, and that the fabrication rate also is critical. And that's essentially a discovery."

The research was selected for Advanced Online Publication (AOP) in the prestigious journal "Nature."

The team, which is led by Yi Liu, a researcher in the Department of Physiology at the University of Texas Southwestern Medical Center, was perplexed when it found a paradoxical result years ago: that optimizing the use of codons (a sequence of three nucleotides that form a unit of genetic code in a DNA or RNA molecule) specifying an essential biological clock component actually abolished the organism's circadian rhythms.

The group's research indicates that the protein in the fungal genus Neurospora they studied, frequency, performs better when the genetic code specifying it has non-optimal codon usage, as is normally found. However, when the genetic code is deliberately altered so that codon usage is optimized, clock function is lost. The reason for this is that non-optimal codon usage slows translation of the genetic code into protein, allotting the frequency protein the necessary time to achieve its optimal protein structure. The team's results also demonstrate that genetic codons do more than simply determine the amino acid sequence of a protein as previously thought: They also affect how much protein can be made as well as the functional quality of that .

"We found that less is more, in many cases," Liu said.

Because many genetic diseases are the result of improperly functioning proteins, Sachs says knowledge about how proteins are made and why they have impaired functions is critical to understanding almost all diseases.

"Understanding gene expression is crucial for understanding cancer and other diseases, because ultimately many of these processes involve either mutations of genes or altered expression of genes," said Sachs, who was asked by Liu to help on the research because of his translational expertise in Neurospora.

Explore further: Expanded blueprint: Genetic incorporation of two different noncanonic amino acids into one protein

More information: www.nature.com/nature/journal/vaop/ncurrent/full/nature11833.html

Related Stories

Simplifying genetic codes to look back in time

August 24, 2012

(Phys.org)— Daisuke Kiga and co-workers at the Department of Computational Intelligence and Systems Science at Tokyo Institute of Technology, together with researchers across Japan, have shown that simpler versions of the ...

'Rhythm' of protein folding encoded in RNA, biologists find

January 31, 2013

(Phys.org)—Multiple RNA sequences can code for the same amino acid, but differences in their respective "optimality" slow or accelerate protein translation. Stanford biologists find optimal and non-optimal codons are consistently ...

Recommended for you

New gene map reveals cancer's Achilles heel

November 25, 2015

Scientists have mapped out the genes that keep our cells alive, creating a long-awaited foothold for understanding how our genome works and which genes are crucial in disease like cancer.

Study suggests fish can experience 'emotional fever'

November 25, 2015

(Phys.org)—A small team of researchers from the U.K. and Spain has found via lab study that at least one type of fish is capable of experiencing 'emotional fever,' which suggests it may qualify as a sentient being. In their ...

How cells in the developing ear 'practice' hearing

November 25, 2015

Before the fluid of the middle ear drains and sound waves penetrate for the first time, the inner ear cells of newborn rodents practice for their big debut. Researchers at Johns Hopkins report they have figured out the molecular ...

How cells 'climb' to build fruit fly tracheas

November 25, 2015

Fruit fly windpipes are much more like human blood vessels than the entryway to human lungs. To create that intricate network, fly embryonic cells must sprout "fingers" and crawl into place. Now researchers at The Johns Hopkins ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

1 / 5 (1) Feb 19, 2013
non-optimal codon usage slows translation of the genetic code into protein, allotting the frequency protein the necessary time to achieve its optimal protein structure.

Or, the time that it takes to manufacture the protein is directly or indirectly acting as the beat of the clock.

Which is the simpler explaination.

I don't think subtle differences in how fast the protein is being made can have much effect in its shape, except over a treshold speed beyond which the protein will be folded incorrectly and stop functioning alltogether.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.