Genes allow bacteria to mess with mercury, study finds

February 7, 2013

By identifying two genes required for transforming inorganic into organic mercury, which is far more toxic, scientists today have taken a significant step toward protecting human health.

The question of how methylmercury, an organic form of mercury, is produced by natural processes in the environment has stumped scientists for decades, but a team led by researchers at Oak Ridge National Laboratory has solved the puzzle. Results of the study, published in the journal Science, provide the for this process, known as microbial mercury methylation, and have far-reaching implications.

"Until now, we did not know how the bacteria convert mercury from natural and into methylmercury," said ORNL's Liyuan Liang, a co-author and leader of a large -funded mercury research program that includes researchers from the University of Missouri-Columbia and University of Tennessee.

"This newly gained knowledge will allow scientists to study proteins responsible for the conversion process and learn what controls the activity," said Liang, adding that it may lead to ways of limiting methylmercury production in the environment.

For some 40 years scientists have known that when mercury is released into the environment certain bacteria can transform it into highly toxic methylmercury. Exactly how bacteria make this happen has eluded scientists. The challenge was to find proteins that can transfer a certain type of and to identify the genes responsible for their production.

Ultimately, by combining chemical principles and genome sequences, the team identified two genes, which they named hgcA and hgcB. Researchers experimentally deleted these genes one at a time from two strains of bacteria, which caused the resulting to lose the ability to produce methylmercury. Reinserting these genes restored that capability, thus verifying the discovery.

The researchers found that this two- is present in all known mercury-methylating bacteria, and they predicted that more than 50 other microorganisms may methylate mercury because they have a pair of similar genes.

Another key to the development was the collection of talent assembled to work on this problem.

"This discovery was made possible by our diverse team, which includes scientists with expertise in chemistry, computational biology, microbiology, neutron science, biochemistry and bacterial genetics," said Liang, who rated this paper as one of the most satisfying of her career.

Mercury is a toxin that spreads around the globe mainly through the burning of coal, industrial use and through natural processes such as volcanic eruptions. The chemical element bioaccumulates in aquatic food chains, especially in large fish. Various forms of mercury are widely found in sediments and water.

In a report just released by the United Nations Environmental Programme, Achiim Steiner, United Nations under-secretary general and executive director of UNEP, notes that "mercury remains a major global, regional and national challenge in terms of threats to human health and the environment."

Explore further: Waterborne carbon increases threat of environmental mercury

More information: "The Genetic Basis for Bacterial Mercury Methylation," are Jerry Parks et al., Science, 2013.

Related Stories

Engineered bacteria mop up mercury spills

August 12, 2011

Thousands of tonnes of toxic mercury are released into the environment every year. Much of this collects in sediment where it is converted into toxic methyl mercury, and enters the food chain ending up in the fish we eat. ...

Recommended for you

How the finch changes its tune

August 3, 2015

Like top musicians, songbirds train from a young age to weed out errors and trim variability from their songs, ultimately becoming consistent and reliable performers. But as with human musicians, even the best are not machines. ...

4 million years at Africa's salad bar

August 3, 2015

As grasses grew more common in Africa, most major mammal groups tried grazing on them at times during the past 4 million years, but some of the animals went extinct or switched back to browsing on trees and shrubs, according ...

A look at living cells down to individual molecules

August 3, 2015

EPFL scientists have been able to produce footage of the evolution of living cells at a nanoscale resolution by combining atomic force microscopy and an a super resolution optical imaging system that follows molecules that ...

New lizard named after Sir David Attenborough

August 3, 2015

A research team led by Dr Martin Whiting from the Department of Biological Sciences recently discovered a beautifully coloured new species of flat lizard, which they have named Platysaurus attenboroughi, after Sir David Attenborough.

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

Telekinetic
2.3 / 5 (3) Feb 07, 2013
It is also found in the amalgam fillings in your teeth- no wonder everyone is mad as a hatter.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.