Using fibre lasers for ground-breaking particle acceleration technologies

Feb 05, 2013

Scientists from the Optoelectronics Research Centre (ORC) at the University of Southampton are part of an international project that is investigating the use of fibre lasers in ground-breaking particle accelerator technologies, such as the Large Hadron Collider (LHC).

particle acceleration is a new and potentially revolutionary technology, but is affected by two main issues: efficiency and repetition rates. The lasers used at present consume too much power, and can only produce the required ultrafast laser pulses around once per second to produce acceleration. For many applications needing high repetition rates – particle acceleration, X-ray and gamma ray generation – this makes the use of lasers economically unacceptable and impairs the spread of important scientific and societal laser applications in science, material science, environment, medicine and energy.

However, using fibre lasers may resolve this issue. Fibre lasers can operate at very high average powers, because of their ability to manage the heat generated by laser action. This allows the laser to produce pulses many thousands of times per second, allowing particle acceleration at high repetition rates necessary for real-world applications. Fibres should also improve the overall of suitable lasers by a factor of a thousand, making them more economically feasible for experiments.

Ultrafast fibre lasers, however, can produce only lower energy pulses because of optical nonlinearities in the fibre medium, so don't have the requirement for high energy physics.

The International Coherent Amplification Network (ICAN), a new EU-funded project, aims to harness the efficiency, controllability, and high average power capability of fibre lasers to produce high energy, high repetition rate pulse sources. This will be achieved through a novel laser system, which combines the output of thousands of pulsed fibre lasers.

Dr Bill Brocklesby from the ORC, project manager of ICAN, says: "High-energy ultrafast lasers have already been demonstrated but the challenge to produce high-energy ultrafast pulses at high rates is a specialty for the ORC. Our track record in the development and fabrication of new optical fibres is unparalleled."

The ICAN project, which will last 18 months, has four main laboratories involved – The Optoelectronics Research Centre (ORC) at the University of Southampton; Ecole Polytechnique, Paris; The Fraunhofer Institute for Applied Optics and Precision Engineering (Fraunhofer IOF); and CERN, the European Organisation for Nuclear Research and home to the LHC - world's largest and highest-energy . It also involves a large number of worldwide partners from the laser, fibre and communities and industry.

Explore further: IHEP in China has ambitions for Higgs factory

add to favorites email to friend print save as pdf

Related Stories

Utra-fast fibre lasers, dopey photons... what’s next?

Dec 20, 2007

When lasers were developed in the 1960s, they were a solution looking for a problem to solve. Since then, they have become an essential tool in industries as diverse as nanotechnology and biomedicine. A new ...

Super lasers in Europe? You bet

May 18, 2011

Gaining and maintaining a strong foothold in the European and global technology markets is high on the EU agenda. Helping meet this goal is the ELI ('Extreme light infrastructure') project, which clinched ...

Recommended for you

New approach to form non-equilibrium structures

1 hour ago

Although most natural and synthetic processes prefer to settle into equilibrium—a state of unchanging balance without potential or energy—it is within the realm of non-equilibrium conditions where new possibilities lie. ...

Nike krypton laser achieves spot in Guinness World Records

2 hours ago

A set of experiments conducted on the Nike krypton fluoride (KrF) laser at the U.S. Naval Research Laboratory (NRL) nearly five years ago has, at long last, earned the coveted Guinness World Records title for achieving "Highest ...

Chemist develops X-ray vision for quality assurance

6 hours ago

It is seldom sufficient to read the declaration of contents if you need to know precisely what substances a product contains. In fact, to do this you need to be a highly skilled chemist or to have genuine ...

The future of ultrashort laser pulses

7 hours ago

Rapid advances in techniques for the creation of ultra-short laser pulses promise to boost our knowledge of electron motions to an unprecedented level.

IHEP in China has ambitions for Higgs factory

Jul 23, 2014

Who will lay claim to having the world's largest particle smasher?. Could China become the collider capital of the world? Questions tease answers, following a news story in Nature on Tuesday. Proposals for ...

User comments : 0