Fermi's motion produces a study in spirograph

Feb 27, 2013 by Francis Reddy
This image compresses the Vela movie sequence into a single snapshot by merging pie-slice sections from eight individual frames. Credit: NASA/DOE/Fermi LAT Collaboration

(Phys.org)—NASA's Fermi Gamma-ray Space Telescope orbits our planet every 95 minutes, building up increasingly deeper views of the universe with every circuit. Its wide-eyed Large Area Telescope (LAT) sweeps across the entire sky every three hours, capturing the highest-energy form of light—gamma rays—from sources across the universe. These range from supermassive black holes billions of light-years away to intriguing objects in our own galaxy, such as X-ray binaries, supernova remnants and pulsars.

Now a Fermi scientist has transformed LAT data of a famous into a mesmerizing movie that visually encapsulates the spacecraft's complex motion.

Pulsars are , the crushed cores of massive suns that destroyed themselves when they ran out of fuel, collapsed and exploded. The blast simultaneously shattered the star and compressed its core into a body as small as a city yet more massive than the sun. The result is an object of incredible density, where a spoonful of matter weighs as much as a mountain on Earth. Equally incredible is a pulsar's rapid spin, with typical rotation periods ranging from once every few seconds up to hundreds of times a second. Fermi sees from more than a hundred pulsars scattered across the sky.

One pulsar shines especially bright for Fermi. Called Vela, it spins 11 times a second and is the brightest persistent source of gamma rays the LAT sees. Although gamma-ray bursts and flares from distant black holes occasionally outshine the pulsar, they don't have Vela's staying power. Because pulsars emit beams of energy, scientists often compare them to lighthouses, a connection that in a broader sense works especially well for Vela, which is both a brilliant beacon and a familiar landmark in the gamma-ray sky.

This video is not supported by your browser at this time.
The Vela pulsar outlines a fascinating pattern in this movie showing 51 months of position and exposure data from Fermi's Large Area Telescope (LAT). The pattern reflects numerous motions of the spacecraft, including its orbit around Earth, the precession of its orbital plane, the manner in which the LAT nods north and south on alternate orbits, and more. The movie renders Vela's position in a fisheye perspective, where the middle of the pattern corresponds to the central and most sensitive portion of the LAT's field of view. The edge of the pattern is 90 degrees away from the center and well beyond what scientists regard as the effective limit of the LAT's vision. Better knowledge of how the LAT's sensitivity changes across its field of view helps Fermi scientists better understand both the instrument and the data it returns. Credit: NASA/DOE/Fermi LAT Collaboration

Most telescopes focus on a very small region of the sky, but the LAT is a wide-field instrument that can detect gamma rays across a large portion of the sky at once. The LAT is, however, much more sensitive to gamma rays near the center of its field of view than at the edges. Scientists can use observations of a bright source like Vela to track how this sensitivity varies across the instrument's field of view.

With this in mind, LAT team member Eric Charles, a physicist at the Kavli Institute for Particle Astrophysics and Cosmology and the SLAC National Accelerator Laboratory at Stanford University in California, used the famous pulsar to produce a novel movie. He tracked both Vela's position relative to the center of the LAT's field of view and the instrument's exposure of the pulsar during the first 51 months of Fermi's mission, from Aug. 4, 2008, to Nov. 15, 2012.

The movie renders Vela's position in a fisheye perspective, where the middle of the pattern corresponds to the central and most sensitive portion of the LAT's field of view. The edge of the pattern is 90 degrees away from the center and well beyond what scientists regard as the effective limit of the LAT's vision.

The pulsar traces out a loopy, hypnotic pattern reminiscent of art produced by the colored pens and spinning gears of a Spirograph, a children's toy that produces geometric patterns.

The pattern created in the Vela movie reflects numerous motions of the spacecraft. The first is Fermi's 95-minute orbit around Earth, but there's another, subtler motion related to it. The orbit itself also rotates, a phenomenon called precession. Similar to the wobble of an unsteady top, Fermi's orbital plane makes a slow circuit around Earth every 54 days.

This video is not supported by your browser at this time.
Fermi's Large Area Telescope is the spacecraft's main scientific instrument. This animation shows how a gamma ray (purple) entering the LAT is converted into an electron (red) and a positron (blue). High-precision detectors track the motion of the particles, whose paths point back to the gamma ray's source. Credit: NASA's Goddard Space Flight Center Conceptual Image Lab

In order to capture the entire sky every two orbits, scientists deliberately nod the LAT in a repeating pattern from one orbit to the next. It first looks north on one , south on the next, and then north again. Every few weeks, the LAT deviates from this pattern to concentrate on particularly interesting targets, such as eruptions on the sun, brief but brilliant gamma-ray bursts associated with the birth of stellar-mass , and outbursts from in distant galaxies.

The Vela movie captures one other Fermi motion. The spacecraft rolls to keep the sun from shining on and warming up the LAT's radiators, which regulate its temperature by bleeding excess heat into space.

The braided loops and convoluted curves drawn by Vela hint at the complexity of removing these effects from the torrent of data Fermi returns, but that's a challenge LAT scientists long ago proved they could meet. Still going strong after more than four years on the job, Fermi continues its mission to map the high-energy sky, which is now something everyone can envision as a celestial Spriograph traced by a pulsar pen.

Explore further: How baryon acoustic oscillation reveals the expansion of the universe

Related Stories

A new way to discover pulsars

May 22, 2012

(Phys.org) -- The Large Area Telescope (LAT), built by SLAC for the Fermi Gamma-ray Space Telescope, collects information on high-energy gamma rays from numerous sources in the sky. Among these are small, ...

Fermi telescope unveils a dozen new pulsars

Jan 06, 2009

(PhysOrg.com) -- NASA's Fermi Gamma-ray Space Telescope has discovered 12 new gamma-ray-only pulsars and has detected gamma-ray pulses from 18 others. The finds are transforming our understanding of how these ...

Recommended for you

The Great Cold Spot in the cosmic microwave background

8 hours ago

The cosmic microwave background (CMB) is the thermal afterglow of the primordial fireball we call the big bang. One of the striking features of the CMB is how remarkably uniform it is. Still, there are some ...

Mystery of rare five-hour space explosion explained

Sep 17, 2014

Next week in St. Petersburg, Russia, scientists on an international team that includes Penn State University astronomers will present a paper that provides a simple explanation for mysterious ultra-long gamma-ray ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

1 / 5 (2) Feb 28, 2013
Sub; Necessity-Comprehensive model
Cosmology needs best of brains trust.
This approach by FERMI LAT groups mst be complimented.
The Reflector Concepts form the fore-front to project Cosmic function of the universe. more projections are available for Scientists in my books-Space Cosmology vedas Interlinks.
Need to develop cosmic vision index Patterns-leading to Cosmological Index .http://www.scribd...Dec-1999