'Fat worms' inch scientists toward better biofuel production

February 26, 2013

Fat worms confirm that researchers from Michigan State University have successfully engineered a plant with oily leaves—a feat that could enhance biofuel production as well as lead to improved animal feeds.

The results, published in the current issue of The , the journal of the American Society of Plant Biologists, show that researchers could use an algae gene involved in to engineer a plant that stores lipids or vegetable oil in its leaves – an uncommon occurrence for most plants.

Traditional biofuel research has focused on improving the of seeds. One reason for this focus is because oil production in seeds occurs naturally. Little research, however, has been done to examine the oil production of leaves and stems, as plants don't typically store lipids in these tissues.

Christoph Benning, MSU professor of biochemistry and molecular biology, led a collaborative effort with colleagues from the Great Lakes Bioenergy Research Center. The team's efforts resulted in a significant early step toward producing better plants for biofuels.

"Many researchers are trying to enhance plants' , and this is another way of approaching it," Benning said. "It's a proof-of-concept that could be used to boost plants' oil production for biofuel use as well as improve the of ."

Benning and his colleagues began by identifying five genes from one-celled . From the five, they identified one that, when inserted into Arabidopsis thaliana, successfully boosted oil levels in the plant's .

To confirm that the improved plants were more nutritious and contained more energy, the research team fed them to caterpillar larvae. The larvae that were fed oily leaves from the enhanced plants gained more weight than worms that ate regular leaves.

For the next phase of the research, Benning and his colleagues will work to enhance oil production in grasses and algae that have economic value. The benefits of this research are worth pursuing, Benning said.

"If oil can be extracted from leaves, stems and seeds, the potential energy capacity of plants may double," he said. "Further, if algae can be engineered to continuously produce high levels of oil, rather than only when they are under stress, they can become a viable alternative to traditional agricultural crops."

Moreover, algae can be grown on poor agricultural land – a big plus in the food vs. fuel debate, he added.

"These basic research findings are significant in advancing the engineering of oil-producing plants," said Kenneth Keegstra, GLBRC scientific director and MSU University Distinguished Professor of biochemistry and molecular biology. "They will help write a new chapter on the development of production schemes that will enhance the quantity, quality and profitability of both traditional and nontraditional crops."

Explore further: Discovery of plant protein holds promise for biofuel production

Related Stories

Engineered tobacco plants have more potential as a biofuel

December 31, 2009

Researchers from the Biotechnology Foundation Laboratories at Thomas Jefferson University have identified a way to increase the oil in tobacco plant leaves, which may be the next step in using the plants for biofuel. Their ...

New sources of biofuel to take pressure off traditional crops

September 10, 2009

"Salt-loving algae could be the key to the successful development of biofuels as well as being an efficient means of recycling atmospheric carbon dioxide", Professor John Cushman of the University of Nevada told the Society ...

Recommended for you

Study shows how giraffe assassin bugs outwit spider prey

October 26, 2016

(Phys.org)—A biologist at Macquarie University in Australia has discovered the secret behind the giraffe assassin's ability to catch and kill spiders in their webs. In his paper published on the open access site Royal Society ...

New analysis of big data sheds light on cell functions

October 26, 2016

Researchers have developed a new way of obtaining useful information from big data in biology to better understand—and predict—what goes on inside a cell. Using genome-scale models, researchers were able to integrate ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.