'Fat worms' inch scientists toward better biofuel production

Feb 26, 2013

Fat worms confirm that researchers from Michigan State University have successfully engineered a plant with oily leaves—a feat that could enhance biofuel production as well as lead to improved animal feeds.

The results, published in the current issue of The , the journal of the American Society of Plant Biologists, show that researchers could use an algae gene involved in to engineer a plant that stores lipids or vegetable oil in its leaves – an uncommon occurrence for most plants.

Traditional biofuel research has focused on improving the of seeds. One reason for this focus is because oil production in seeds occurs naturally. Little research, however, has been done to examine the oil production of leaves and stems, as plants don't typically store lipids in these tissues.

Christoph Benning, MSU professor of biochemistry and molecular biology, led a collaborative effort with colleagues from the Great Lakes Bioenergy Research Center. The team's efforts resulted in a significant early step toward producing better plants for biofuels.

"Many researchers are trying to enhance plants' , and this is another way of approaching it," Benning said. "It's a proof-of-concept that could be used to boost plants' oil production for biofuel use as well as improve the of ."

Benning and his colleagues began by identifying five genes from one-celled . From the five, they identified one that, when inserted into Arabidopsis thaliana, successfully boosted oil levels in the plant's .

To confirm that the improved plants were more nutritious and contained more energy, the research team fed them to caterpillar larvae. The larvae that were fed oily leaves from the enhanced plants gained more weight than worms that ate regular leaves.

For the next phase of the research, Benning and his colleagues will work to enhance oil production in grasses and algae that have economic value. The benefits of this research are worth pursuing, Benning said.

"If oil can be extracted from leaves, stems and seeds, the potential energy capacity of plants may double," he said. "Further, if algae can be engineered to continuously produce high levels of oil, rather than only when they are under stress, they can become a viable alternative to traditional agricultural crops."

Moreover, algae can be grown on poor agricultural land – a big plus in the food vs. fuel debate, he added.

"These basic research findings are significant in advancing the engineering of oil-producing plants," said Kenneth Keegstra, GLBRC scientific director and MSU University Distinguished Professor of biochemistry and molecular biology. "They will help write a new chapter on the development of production schemes that will enhance the quantity, quality and profitability of both traditional and nontraditional crops."

Explore further: Parasitic worm genomes: largest-ever dataset released

Related Stories

Engineered tobacco plants have more potential as a biofuel

Dec 31, 2009

Researchers from the Biotechnology Foundation Laboratories at Thomas Jefferson University have identified a way to increase the oil in tobacco plant leaves, which may be the next step in using the plants for biofuel. Their ...

Recommended for you

Parasitic worm genomes: largest-ever dataset released

10 hours ago

The largest collection of helminth genomic data ever assembled has been published in the new, open-access WormBase-ParaSite. Developed jointly by EMBL-EBI and the Wellcome Trust Sanger Institute, this new ...

Bitter food but good medicine from cucumber genetics

Nov 27, 2014

High-tech genomics and traditional Chinese medicine come together as researchers identify the genes responsible for the intense bitter taste of wild cucumbers. Taming this bitterness made cucumber, pumpkin ...

New button mushroom varieties need better protection

Nov 27, 2014

A working group has recently been formed to work on a better protection of button mushroom varieties. It's activities are firstly directed to generate consensus among the spawn/breeding companies to consider ...

Cataloguing 10 million human gut microbial genes

Nov 25, 2014

Over the past several years, research on bacteria in the digestive tract (gut microbiome) has confirmed the major role they play in our health. An international consortium, in which INRA participates, has developed the most ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.