Explosive breakthrough in research on molecular recognition

Feb 12, 2013

Ever wonder how sometimes people still get through security with explosives on their person? Research done in the University of Alberta's Department of Chemical and Materials Engineering has revealed a new way to better detect these molecules associated with explosive mixtures.

A team of researchers including post-doctoral fellows Seonghwan Kim, Dongkyu Lee and Xuchen Liu, with research associate Charles Van Neste, visiting professor, Sangmin Jeon from the Pohang University of Science and Technology (South Korea), and Department of Chemical and Materials Engineering professor Thomas Thundat, has found a method of using receptor-free nanomechanical infrared spectroscopy to increase recognition of chemical in explosive mixtures.

Detecting trace amounts of explosives with mixed molecules presents a formidable challenge for sensors with chemical coatings. The nanomechanical used by the Univesity of Alberta research team provides higher selectivity in molecular detection by measuring the photothermal effect of the absorbed molecules.

Thundat, who holds the Canadian Excellence Research Chair in Oil Sands Molecular Engineering, says the spectroscopy looks at the physical nature of the molecule and "even if there are mixed molecules, we can detect specific molecules using this method."

Seonghwan (Sam) Kim explained that conventional sensors based on coatings generally cannot detect specific molecules in complex mixtures if the concentration of interfering molecules is five times greater than the target molecules. The and selectivity are drastically increased using the high-power because the photothermal signal comes from the absorption of infrared photons and nonradiative decay processes. Using this method, a few trillionths of a gram of explosive molecules can now be detected in a complex mixture even if there is a higher concentration of other interfering molecules.

The research team's findings are published in Scientific Reports by Nature Publishing Group on January 23, 2013.

The research team's current work looks at detecting biomolecules and hydrocarbons in the oil industry and nerve gas stimulants (DMMP), which can be found in household radiators, gasoline, and fabric softeners, for example. The team also hopes to develop a hand-held device for chemical detection that could be utilized in fields such as security, health care and environmental protection.

Explore further: Beer quality is no froth and bubble

More information: www.nature.com/srep/2013/13012… /full/srep01111.html

Related Stories

New method for detecting explosives

Mar 13, 2009

A group of researchers in Tennessee and Denmark has discovered a way to sensitively detect explosives based on the physical properties of their vapors. Their technology, which is currently being developed into prototype devices ...

Plastic laser detects tiny amounts of explosives

Jun 08, 2010

(PhysOrg.com) -- Detecting hidden explosives is a difficult task but now researchers in the UK have developed a completely new way of detecting them, with a laser sensor capable of detecting molecules of explosives ...

Silkmoth inspires novel explosive detector

Jun 01, 2012

Imitating the antennas of the silkmoth, Bombyx mori, to design a system for detecting explosives with unparalleled performance is the feat achieved by a French research team. Made up of a silicon microcantilever ...

Lasers could be used to detect roadside bombs

Sep 16, 2011

A research team at Michigan State University has developed a laser that could detect roadside bombs – the deadliest enemy weapon encountered in Iraq and Afghanistan.

Recommended for you

'Global positioning' for molecules

Dec 19, 2014

In everyday life, the global positioning system (GPS) can be employed to reliably determine the momentary location of one en route to the desired destination. Scientists from the Institute of Physical and ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.