Efficient distributed quantum computing

Feb 21, 2013
Efficient distributed quantum computing

(Phys.org)—A quantum computer doesn't need to be a single large device but could be built from a network of small parts, new research from the University of Bristol has demonstrated. As a result, building such a computer would be easier to achieve.

Many groups of research scientists around the world are trying to build a quantum computer to run algorithms that take advantage of the strange effects of quantum mechanics such as entanglement and superposition.  A quantum computer could solve problems in chemistry by simulating many body , or break modern cryptographic schemes by quickly factorising large numbers.

Previous research shows that if a is to offer an exponential speed-up over classical computing, there must be a large entangled state at some point in the computation and it was widely believed that this translates into requiring a single large device.

In a paper published today in Proceedings of the Royal Society A, Dr Steve Brierley of Bristol's School of Mathematics and colleagues  show that, in fact, this is not the case.  A network of small quantum computers can implement any quantum algorithm with a small overhead.

The key breakthrough was learning how to efficiently move quantum data between the many sites without causing a collision or destroying the delicate superposition needed in the computation.  This allows the different sites to communicate with each other during the computation in much the same way a parallel would do.

Dr Brierley said: "Building a computer whose operation is based on the laws of is a daunting challenge.  At least now we know that we can build one as a network of small modules."

Explore further: Soundproofing with quantum physics

More information: Beals, R. et al. Efficient Distributed Quantum Computing, Proceedings of the Royal Society A: rspa.royalsocietypublishing.org/content/469/2153/20120686.abstract

Arxiv: arxiv.org/abs/1207.2307

Related Stories

Quantum computing with recycled particles

Oct 23, 2012

A research team from the University of Bristol's Centre for Quantum Photonics (CQP) have brought the reality of a quantum computer one step closer by experimentally demonstrating a technique for significantly reducing the ...

Chinese team builds first quantum router

Aug 07, 2012

(Phys.org) -- With all the talk of quantum computers, little notice has been made of work on what is known as a quantum Internet, which is where data is sent across a web of computers via devices that work ...

Recommended for you

Soundproofing with quantum physics

Jul 02, 2015

Sebastian Huber and his colleagues show that the road from abstract theory to practical applications needn't always be very long. Their mechanical implementation of a quantum mechanical phenomenon could soon ...

Producing spin-entangled electrons

Jul 01, 2015

A team from the RIKEN Center for Emergent Matter Science, along with collaborators from several Japanese institutions, have successfully produced pairs of spin-entangled electrons and demonstrated, for the ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.