How did early primordial cells evolve?

Feb 28, 2013

Four billion years ago, soon after the planet cooled enough for life to begin, primordial cells may have replicated and divided without protein machinery or cell walls, relying instead on just a flimsy lipid membrane. New research on bacteria examines exactly how these primitive cells could have evolved without such crucial structures. While the vast majority of bacteria have cell walls, many bacteria can switch to a wall-free existence called the L-form state, which could mirror the structure of primordial cells. A study published by Cell Press February 28th in the journal Cell reveals how bacteria in this L-form state divide and proliferate, shedding light on how the earliest forms of cellular life may have replicated.

"The main surprise for me was how simple the mechanism was. It doesn't require any sophisticated protein-based machinery," says senior study author Jeff Errington of Newcastle University. "This makes it plausible as an explanation for how very primitive cells could have proliferated in the very early days of evolution."

The cell wall is a layered structure surrounding cells that protects them and maintains their shape. It is present in all known major bacterial lineages, and it was also probably present in the last common ancestor of bacteria. This structure is so important that it is targeted by antibiotics, and many bacteria responsible for infectious diseases can switch to the L-form state to resist antibiotics.

This video is not supported by your browser at this time.
L-form bacteria undergoes cell division. The time scale is in minutes. Credit: Cell, Mercier et al.

Perhaps the most striking change associated with the L-form state is the way that the bacteria replicate. Instead of relying on precise, complicated cell division machinery, L-form bacteria become irregularly shaped and form cell surface bulges that pinch off to become . Although associated with the L-form state have been identified, little is known about the underlying L-form replication.

Addressing this question in the new study, Errington and his team identified two genetic changes required for L-form growth in bacteria. One of these mutations was necessary for the increased production of fatty acids in the cell membrane, which would be expected to increase the cell's surface area relative to its volume. Indeed, the researchers found that by artificially increasing cell surface area, they could induce L-form-like shape changes and cell division. The findings suggest that a simple biophysical change—an imbalance between surface area and volume—underlies L-form cell division.

"Our study paves the way for understanding how L-form bacteria cause disease and resist antibiotics," Errington says. "It also offers a model system for future experiments aimed at exploring the possible replication mechanisms of that could have existed before the explosion of bacterial life on the planet nearly four billion years ago."

Explore further: Two-armed control of ATR, a master regulator of the DNA damage checkpoint

More information: Cell, Mercier et al.: "Excess membrane synthesis drives a primitive mode of cell proliferation." dx.doi.org/10.1016/j.cell.2013.01.043

Related Stories

Scientists explore new window on the origins of life

Feb 12, 2009

(PhysOrg.com) -- The remarkable behaviour of bacteria that have been forced to live without their protective wall has allowed Newcastle University scientists to open a new window on the origins of life on earth.

Bacterial roundabouts determine cell shape

Jun 03, 2011

Almost all bacteria owe their structure to an outer cell wall that interacts closely with the supporting MreB protein inside the cell. As scientists at the Max Planck Institute for Biochemistry and at the ...

Proteases inside the cell

Mar 25, 2011

(PhysOrg.com) -- A Cardiff-led team has found a unique type of protein inside bacterial cells which could shed new light on organisms such as the disease-causing C. difficile.

Recommended for you

Japanese scientist resigns over stem cell scandal

Dec 19, 2014

A researcher embroiled in a fabrication scandal that has rocked Japan's scientific establishment said Friday she would resign after failing to reproduce results of what was once billed as a ground-breaking study on ...

'Hairclip' protein mechanism explained

Dec 18, 2014

Research led by the Teichmann group on the Wellcome Genome Campus has identified a fundamental mechanism for controlling protein function. Published in the journal Science, the discovery has wide-ranging implications for bi ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.