DNAzymes and gold nanoparticles: A colorimetric assay for diagnostics in the field

Feb 12, 2013
DNAzymes and gold nanoparticles: A colorimetric assay for diagnostics in the field

Infectious diseases such as malaria and syphilis can be diagnosed rapidly and reliably in the field by using a simple test developed by Canadian scientists. The test is based on the use of DNAzymes and gold nanoparticles. As the researchers report in the journal Angewandte Chemie, their test allows for the sensitive detection of bacteria, viruses, and parasites.

Dangerous must be identified in time in order to prevent them from spreading. The DNA of pathogens is an ideal and can easily be identified by PCR. However, this is only possible if expensive laboratory equipment and trained personnel are on hand. This may not be the case in remote locations or developing nations. Alternative methods that are simple and inexpensive while also remaining sensitive and specific are needed.

Kyryl Zagorovsky and Warren C.W. Chan at the University of Toronto (Canada) have now combined two modern technologies in a novel way: They have used DNAzymes as signal amplifiers and for detection. Gold nanoparticles (GNPs) absorb light. The wavelength of the light absorbed depends on whether the nanoparticles are separate or aggregated. The difference in color can be seen with the naked eye. A solution of individual particles appears red, whereas aggregates are blue-violet in color.

DNAzymes are synthetic that can enzymatically split other nucleic . The researchers separated a DNAzyme into two inactive halves that both selectively bind to a specific gene segment of the pathogen to be detected. The act of binding reunites the halves and activates them.

For their test procedure, the scientists produced two sets of GNPs that bind to two different types of , type A and type B. In addition, they synthesized a three-part "linker" made of DNA. One end of the linker is the complement to type A DNA; the second end is the complement to type B DNA. The center part is designed to be split by active DNAzymes.

In the test sample with no pathogen present, the DNAzymes remain inactive and the linkers remain intact. They bind to a GNP at each end and link the GNPs into larger aggregates, causing the solution to turn blue-violet. In contrast, if there is pathogen in the sample, the DNAzymes are activated and proceed to split the linkers. Now only the bridging parts of the linker can bind to DNA strands of the GNPs, so they cannot link the GNPs together. The solution stays red. Because every activated DNAzyme splits many linkers, it amplifies the signal.

This new type of test is simple and inexpensive; it can be made to detect every kind of pathogen, as the researchers demonstrated by detecting gonorrhea, syphilis, malaria, and hepatitis B. In a freeze-dried state, the reagents can be stored with no problem – an important requirement for use in the field.

Explore further: Nano-forests to reveal secrets of cells

More information: Chan, W. et al. A Plasmonic DNAzyme Strategy for Point-of-Care Genetic Detection of Infectious Pathogens, Angewandte Chemie International Edition. dx.doi.org/10.1002/anie.201208715

Related Stories

Revealing Photographs of DNA

May 10, 2007

Ultrasensitive genetic detection methods could revolutionize the diagnosis and treatment of diseases. However, all the techniques until now have been far too technically demanding for broad application. Munich researchers ...

Researchers use gold nanoparticles to diagnose flu in minutes

Aug 04, 2011

Arriving at a rapid and accurate diagnosis is critical during flu outbreaks, but until now, physicians and public health officials have had to choose between a highly accurate yet time-consuming test or a rapid but error-prone ...

Everything flows in rapid diagnostic tests

Apr 12, 2012

(Phys.org) -- Our ability to detect pathogens has become quite good, but it usually requires complex laboratory techniques. Sometimes we need a quick result, or there is no laboratory nearby. Portable and ...

Recommended for you

Lab unveil new nano-sized synthetic scaffolding technique

12 hours ago

Scientists, including University of Oregon chemist Geraldine Richmond, have tapped oil and water to create scaffolds of self-assembling, synthetic proteins called peptoid nanosheets that mimic complex biological ...

Nano-forests to reveal secrets of cells

18 hours ago

Vertical nanowires could be used for detailed studies of what happens on the surface of cells. The findings are important for pharmaceuticals research, among other applications. A group of researchers from ...

A single molecule device for mobile phones

20 hours ago

Researchers from the Delft University of Technology, Groningen University and the FOM Foundation have designed a single molecule which can act as a useful building block in nanometer-size circuits. They found ...

Intricate algae produce low-cost biosensors

Sep 01, 2014

(Phys.org) —Oregon State University researchers are combining diatoms, a type of single-celled photosynthetic algae, with nanoparticles to create a sensor capable of detecting miniscule amounts of protein or other biomarkers.

User comments : 0