DNA's twisted communication: Genome organization key element for control of gene expression

February 28, 2013

During embryo development, genes are dynamically, and very precisely, switched on and off to confer different properties to different cells and build a well-proportioned and healthy animal. Fgf8 is one of the key genes in this process, controlling in particular the growth of the limbs and the formation of the different regions of the brain. Researchers at EMBL have elucidated how Fgf8 in mammal embryos is, itself, controlled by a series of multiple, interdependent regulatory elements. Their findings, published today in Developmental Cell, shed new light on the importance of the genome structure for gene regulation.

Fgf8 is controlled by a large number of that are clustered in the same large region of the genome and are interspersed with other, unrelated genes. Both the sequences and the intricate genomic arrangement of these elements have remained very stable throughout evolution, thus proving their importance. By selectively changing the relative positioning of the regulatory elements, the researchers were able to modify their combined impact on Fgf8, and therefore drastically affect the embryo.

"We showed that the surprisingly complex organisation of this genomic region is a key aspect of the regulation of Fgf8," explains François Spitz, who led the study at EMBL. "Fgf8 responds to the input of specific regulatory elements, and not to others, because it sits at a special place, not because it is a special gene. How the regulatory elements contribute to activate a gene is not determined by a specific recognition tag, but by where precisely the gene is in the genome."

Scientists are still looking into the molecular details of this . It is likely that the way DNA folds in 3D could, under certain circumstances, bring different sets of regulatory elements in contact with each other and with Fgf8, to trigger or prevent . These findings highlight a level of complexity of that is often overlooked. Regulatory elements are not engaged in a one-to-one relationship with the specific gene that has the appropriate DNA sequence. The local genomic organisation, and 3D folding of DNA, might actually be more important factors that both modulate the action of regulation elements, and put them in contact with their target gene.

More research will be necessary to understand in detail the impact of the 3D structure of DNA on the communication between the various elements of the genome, and on the regulation of gene expression. Further down the line, this could also further our understanding of how genomic rearrangements might disrupt these 3D regulatory networks and lead to diseases and malformations.

Explore further: New data suggest 'jumping genes' play a significant role in gene regulatory networks

Related Stories

The informant: A jumping gene

March 21, 2011

Scientists at the European Molecular Biology Laboratory (EMBL) in Heidelberg, Germany, have developed a new method for studying gene regulation, by employing a jumping gene as an informant. Published online today in Nature ...

Mobile MITEs jump to fame in gene regulation

June 18, 2012

Moving genetic elements from one location to another in a genome makes for a very dynamic situation in terms of development and disease. An EU project has investigated a special type of micro transposable element and its ...

Recommended for you

Genomes uncover life's early history

August 24, 2015

A University of Manchester scientist is part of a team which has carried out one of the biggest ever analyses of genomes on life of all forms.

Rare nautilus sighted for the first time in three decades

August 25, 2015

In early August, biologist Peter Ward returned from the South Pacific with news that he encountered an old friend, one he hadn't seen in over three decades. The University of Washington professor had seen what he considers ...

Study shows female frogs susceptible to 'decoy effect'

August 28, 2015

(Phys.org)—A pair of researchers has found that female túngaras, frogs that live in parts of Mexico and Central and South America, appear to be susceptible to the "decoy effect." In their paper published in the journal ...

Why a mutant rice called Big Grain1 yields such big grains

August 24, 2015

(Phys.org)—Rice is one of the most important staple crops grown by humans—very possibly the most important in history. With 4.3 billion inhabitants, Asia is home to 60 percent of the world's population, so it's unsurprising ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.