Discoveries suggest icy cosmic start for amino acids and DNA ingredients

Feb 28, 2013
The Green Bank Telescope and some of the molecules it has discovered. Credit: Bill Saxton, NRAO/AUI/NSF

(Phys.org)—Using new technology at the telescope and in laboratories, researchers have discovered an important pair of prebiotic molecules in interstellar space. The discoveries indicate that some basic chemicals that are key steps on the way to life may have formed on dusty ice grains floating between the stars.

The scientists used the National Science Foundation's Green Bank Telescope (GBT) in West Virginia to study a giant cloud of gas some 25,000 light-years from Earth, near the center of our . The chemicals they found in that cloud include a molecule thought to be a precursor to a key component of DNA and another that may have a role in the formation of the amino acid alanine.

One of the newly-discovered molecules, called cyanomethanimine, is one step in the process that chemists believe produces adenine, one of the four nucleobases that form the "rungs" in the ladder-like . The other molecule, called ethanamine, is thought to play a role in forming alanine, one of the twenty amino acids in the genetic code.

"Finding these molecules in an interstellar gas cloud means that important building blocks for DNA and can 'seed' newly-formed planets with the chemical precursors for life," said Anthony Remijan, of the (NRAO).

In each case, the newly-discovered interstellar molecules are intermediate stages in multi-step chemical processes leading to the final . Details of the processes remain unclear, but the discoveries give new insight on where these processes occur.


In the above video, students and their astronomer-advisor share the excitement of discovery.

Previously, scientists thought such processes took place in the very tenuous gas between the stars. The , however, suggest that the chemical formation sequences for these molecules occurred not in gas, but on the surfaces of in interstellar space.

"We need to do further experiments to better understand how these reactions work, but it could be that some of the first key steps toward biological chemicals occurred on tiny ice grains," Remijan said.

The discoveries were made possible by new technology that speeds the process of identifying the "fingerprints" of cosmic chemicals. Each molecule has a specific set of rotational states that it can assume. When it changes from one state to another, a specific amount of energy is either emitted or absorbed, often as radio waves at specific frequencies that can be observed with the GBT.

New laboratory techniques have allowed astrochemists to measure the characteristic patterns of such radio frequencies for specific molecules. Armed with that information, they then can match that pattern with the data received by the telescope. Laboratories at the University of Virginia and the Harvard-Smithsonian Center for Astrophysics measured radio emission from cyanomethanimine and ethanamine, and the frequency patterns from those molecules then were matched to publicly-available data produced by a survey done with the GBT from 2008 to 2011.

A team of undergraduate students participating in a special summer research program for minority students at the University of Virginia (U.Va.) conducted some of the experiments leading to the discovery of cyanomethanimine. The students worked under U.Va. professors Brooks Pate and Ed Murphy, and Remijan. The program, funded by the National Science Foundation, brought students from four universities for summer research experiences. They worked in Pate's astrochemistry laboratory, as well as with the GBT data.

"This is a pretty special discovery and proves that early-career students can do remarkable research," Pate said.

The researchers are reporting their findings in the Astrophysical Journal Letters.

Explore further: Exoplanet measured with remarkable precision

Related Stories

Mining for Molecules in the Milky Way

Jun 02, 2008

Scientists are using the giant Robert C. Byrd Green Bank Telescope (GBT) to go prospecting in a rich molecular cloud in our Milky Way Galaxy. They seek to discover new, complex molecules in interstellar space ...

Research center to free chemistry from Earth's bonds

Oct 08, 2008

A new research center combining the tools of chemistry and astronomy will use the unique laboratory of interstellar space to free the study of basic chemistry from the restrictive bonds of Earth.

Astronomers unveiling life's cosmic origins

Feb 12, 2009

(PhysOrg.com) -- Processes that laid the foundation for life on Earth -- star and planet formation and the production of complex organic molecules in interstellar space -- are yielding their secrets to astronomers ...

Astrochemistry enters a bold new era with ALMA

Sep 20, 2012

(Phys.org)—Combining the cutting-edge capabilities of the ALMA telescope with newly-developed laboratory techniques, scientists are opening a completely new era for deciphering the chemistry of the Universe. ...

Recommended for you

Swirling electrons in the whirlpool galaxy

11 hours ago

The whirlpool galaxy Messier 51 (M51) is seen from a distance of approximately 30 million light years. This galaxy appears almost face-on and displays a beautiful system of spiral arms.

A spectacular landscape of star formation

17 hours ago

This image, captured by the Wide Field Imager at ESO's La Silla Observatory in Chile, shows two dramatic star formation regions in the Milky Way. The first, on the left, is dominated by the star cluster NGC ...

Exoplanet measured with remarkable precision

Aug 19, 2014

Barely 30 years ago, the only planets astronomers had found were located right here in our own solar system. The Milky Way is chock-full of stars, millions of them similar to our own sun. Yet the tally ...

New star catalog reveals unexpected 'solar salad'

Aug 19, 2014

(Phys.org) —An Arizona State University alumnus has devised the largest catalog ever produced for stellar compositions. Called the Hypatia Catalog, after one of the first female astronomers who lived in ...

User comments : 0