Cooling solution for supercomputer heralds new age in renewable energy

Feb 25, 2013
Contractors carry out works for the groundwater cooling aspect of the CSIRO Geothermal Project in Perth, Western Australia.

The development of a renewable system for cooling Australia's largest supercomputer is a step closer, following the start of an innovative geothermal energy project in Perth.

In what will be an Australian first, the CSIRO Geothermal Project will deliver a novel solution for cooling the Pawsey Centre supercomputer, an A$80 million facility currently under construction in Kensington, south Perth.

"The system is known as groundwater cooling, and works by pumping from a depth of around 100 metres through an above-ground heat exchanger to cool the supercomputer, then reinjecting the water underground again," said CSIRO's project director, Steve Harvey.

"Although the water returned to the aquifer is a few degrees warmer than the surrounds, the groundwater cooling system is engineered to prevent negative impacts to the surrounding environment."

With zero net use of groundwater, the system is also environmentally friendly. CSIRO estimates that using groundwater cooling to cool the Pawsey Centre supercomputer will save approximately 38.5 million litres of water every year, in comparison to using conventional cooling towers. That's enough to fill more than 15 Olympic-sized . If deployed more widely, the technology also has the potential to replace cooling towers in buildings all over Perth.

Drilling work to implement the groundwater cooling system has recently got underway at the Australian Resources Research Centre (ARRC) in Kensington's Technology Park - the same site that houses the Pawsey Centre supercomputer. The challenge of cooling the new petascale - which will provide expertise to support the world's largest-ever radio telescope (the ) and other high-end science - was one of the driving forces behind the CSIRO Geothermal Project.

"Computers generate lots of heat, as anyone who has sat with a laptop on their knees will know," said Steve Harvey.

"Supercomputers, as you can imagine, use large amounts of electrical power, almost all of which is turned into heat and requires cooling. Recent global changes in the cooling requirements for supercomputers, however, means that we can now use water of an ambient temperature, as opposed to chilled water. That's where groundwater cooling comes in."

As well as using a shallow geothermal solution to cool the supercomputer, the CSIRO Geothermal Project will also investigate a potentially deeper resource located beneath the ARRC site by constructing a 3km deep exploration well later this year.

Explore further: Old timey car to replace NYC horse carriages shown

add to favorites email to friend print save as pdf

Related Stories

Natural energy to help power exploration of the universe

Jun 09, 2010

The Federal Government has announced today that the CSIRO will receive $47.3 million for the development of solar and geothermal energy technologies to power a radio-astronomy observatory and its supporting computer centre.

Keeping cool using the summer heat

Jan 23, 2009

(PhysOrg.com) -- While most Australians are taking care to shield themselves from the harsh summer heat, scientists from the CSIRO Energy Transformed Flagship are working on ways to harness the sun’s warmth ...

Sugar cube size supercomputers

Nov 15, 2010

(PhysOrg.com) -- IBM labs in Zurich may very well shrink a supercomputer processor down to the size of a sugar cube making it almost 50% more energy-efficient than the world's leading supercomputers.

Turning Arizona's dry heat into a comfy chill

Oct 14, 2011

An innovative solar-thermal heating and cooling system installed on top of the UA's Student Recreation Center is expected to harvest almost 200 million kilowatt hours of solar energy per year – enough ...

Recommended for you

Obama launches measures to support solar energy in US

14 hours ago

The White House Thursday announced a series of measures aimed at increasing solar energy production in the United States, particularly by encouraging the installation of solar panels in public spaces.

Tailored approach key to cookstove uptake

14 hours ago

Worldwide, programs aiming to give safe, efficient cooking stoves to people in developing countries haven't had complete success—and local research has looked into why.

Wireless power transfer achieved at five-meter distance

14 hours ago

The way electronic devices receive their power has changed tremendously over the past few decades, from wired to non-wired. Users today enjoy all kinds of wireless electronic gadgets including cell phones, ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

Limorgreen
not rated yet Feb 26, 2013
For this kind of super-computer they should build a cooling towers:)

More news stories

Hackathon team's GoogolPlex gives Siri extra powers

(Phys.org) —Four freshmen at the University of Pennsylvania have taken Apple's personal assistant Siri to behave as a graduate-level executive assistant which, when asked, is capable of adjusting the temperature ...

Better thermal-imaging lens from waste sulfur

Sulfur left over from refining fossil fuels can be transformed into cheap, lightweight, plastic lenses for infrared devices, including night-vision goggles, a University of Arizona-led international team ...

Chronic inflammation linked to 'high-grade' prostate cancer

Men who show signs of chronic inflammation in non-cancerous prostate tissue may have nearly twice the risk of actually having prostate cancer than those with no inflammation, according to results of a new study led by researchers ...