Not your conventional nucleic acids

February 15, 2013

Northwestern University's Chad A. Mirkin, a world-renowned leader in nanotechnology research and its application, has invented and developed a powerful material that could revolutionize biomedicine: spherical nucleic acids (SNAs).

Mirkin will discuss SNAs and their applications in therapeutics and diagnostics in a talk titled "Nanostructures in Biology and Medicine" at the American Association for the Advancement of Science (AAAS) annual meeting in Boston. His presentation is part of the symposium "Convergence of Physical, Engineering, and Life Sciences: Next Innovation Economy" to be held Friday, Feb. 15.

Potential applications include using SNAs to carry nucleic acid-based therapeutics to the brain for the treatment of glioblastoma, the most aggressive form of , as well as other neurological disorders such as Alzheimer's and Parkinson's diseases. Mirkin is aggressively pursuing treatments for such diseases with Alexander H. Stegh, an assistant professor of neurology at Northwestern's Feinberg School of Medicine.

"These structures are really quite spectacular and incredibly functional," Mirkin said. "People don't typically think about DNA in spherical form, but this novel arrangement of imparts interesting chemical and physical properties that are very different from conventional nucleic acids."

Spherical nucleic acids consist of densely packed, highly oriented nucleic acids arranged on the surface of a nanoparticle, typically gold or silver. The tiny non-toxic balls, each roughly 15 in diameter, can do things the familiar but more cumbersome can't do:

  • SNAs can naturally enter cells and effect gene knockdown, making SNAs a superior tool for treating using gene regulation technology.
  • SNAs can easily cross formidable barriers in the human body, including the blood-brain barrier and the layers that make up skin.
  • SNAs don't elicit an , and they resist degradation, resulting in longer lifetimes in the body.

"The field of medicine needs new constructs and strategies for treating disease," Mirkin said. "Many of the ways we treat disease are based on old methods and materials. Nanotechnology offers the ability to rapidly create new structures with properties that are very different from conventional forms of matter."

Mirkin is the George B. Rathmann Professor of Chemistry in the Weinberg College of Arts and Sciences and professor of medicine, chemical and biological engineering, biomedical engineering and materials science and engineering. He is director of Northwestern's International Institute for Nanotechnology (IIN).

Last year, Mirkin and Amy S. Paller, M.D., chair of dermatology and professor of pediatrics at Feinberg, were the first to demonstrate the use of commercial moisturizers to deliver gene regulation technology for skin cancer therapy. The drug, consisting of SNAs, penetrated the skin's layers and selectively targeted disease-causing genes while sparing normal genes.

"We now can go after a whole new set of diseases," Mirkin said. "Thanks to the Human Genome Project and all of the genomics research over the last two decades, we have an enormous number of known targets. And we can use the same tool for each, the spherical nucleic acid. We simply change the sequence to match the target gene. That's the power of technology."

Explore further: Synthetic HDL: A new weapon to fight cholesterol problems

Related Stories

Pack 'Em In -- Gold Nanoparticles Improve Gene Regulation

February 23, 2009

Investigators at Northwestern University have found that packing small interfering RNA (siRNA) molecules onto the surface of a gold nanoparticle can protect siRNAs from degradation and increase their ability to regulate genes ...

Understanding how cells respond to nanoparticles

October 28, 2010

Gold nanoparticles are showing real promise as vehicles for efficiently delivering therapeutic nucleic acids, such as disease-fighting genes and small interfering RNA (siRNA) molecules, to tumors. Now, a team of investigators ...

Recommended for you

For 2-D boron, it's all about that base

September 2, 2015

Rice University scientists have theoretically determined that the properties of atom-thick sheets of boron depend on where those atoms land.

An engineered surface unsticks sticky water droplets

August 31, 2015

The leaves of the lotus flower, and other natural surfaces that repel water and dirt, have been the model for many types of engineered liquid-repelling surfaces. As slippery as these surfaces are, however, tiny water droplets ...

Electrical circuit made of gel can repair itself

August 25, 2015

(Phys.org)—Scientists have fabricated a flexible electrical circuit that, when cut into two pieces, can repair itself and fully restore its original conductivity. The circuit is made of a new gel that possesses a combination ...

Scientists grow high-quality graphene from tea tree extract

August 21, 2015

(Phys.org)—Graphene has been grown from materials as diverse as plastic, cockroaches, Girl Scout cookies, and dog feces, and can theoretically be grown from any carbon source. However, scientists are still looking for a ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.