Combining quantum information communication and storage

Feb 14, 2013
Combining quantum information communication and storage
This shows a merger of three quantum systems: a superconducting quantum qubit, or, qubit (spheres) interacting with two different resonant cavities. A low frequency phonon cavity (vibrating string) was used as storage of quantum information from the qubit, whereas an electrical microwave cavity (represented by the mirrors) acted as a means of communicating to the outside world. The idea could be used as a building block in the emerging field of quantum information and communication. Credit: Juha Juvonen

(Phys.org)—Aalto University researchers in Finland have successfully connected a superconducting quantum bit, or qubit, with a micrometer-sized drum head. Thus they transferred information from the qubit to the resonator and back again.

- This work represents the first step towards creating exotic mechanical quantum states. For example, the transfer makes it possible to create a state in which the resonator simultaneously vibrates and doesn't vibrate, says professor Mika Sillanpää from Aalto University, who runs the research group.

A qubit is the quantum-mechanical equivalent of the bits we know from computers. A traditional bit can be in a state of 0 or 1, while a qubit can be in both states at the same time. In theory, this inconceivable situation allows for a in which the operations are performed simultaneously for all possible numbers. In the case of a single qubit, this means zero and one, but as the number of qubits increases, the amount of possible numbers and simultaneous calculations grows exponentially. The of a qubit is very fragile and easily disturbed between and during the operations. The key to successful quantum calculation is being able to protect the qubit state from disturbances in the environment.

- In this case, the qubit state can be stored as vibration, thus preserving the state for much longer than the qubit itself. The resonator also functions as a mechanical , which is something that an ordinary memory can't do, explains Juha Pirkkalainen from Aalto University, who is doing his dissertation on the topic.

The work combines the achievements of two Nobel Prize winners

The work combined the achievements of both winners of this year's Nobel Prize for Physics. The qubit state was measured using a superconducting cavity in the same way that Serge Haroche measured atoms, and the state was also linked to mechanical movement as in David Wineland's experiments. In contrast to these larger-scale measurement arrangements, the experiment at the O.V. Lounasmaa Laboratory was prepared for a tiny silicon microchip. This made it possible to cool the sample to near absolute zero temperatures and then use microwaves.

Explore further: Quantum holograms as atomic scale memory keepsake

More information: www.nature.com/nature/journal/… ull/nature11821.html

Related Stories

Turning down the noise in quantum data storage

Jan 19, 2010

Researchers who hope to create quantum computers are currently investigating various methods to store data. Nitrogen atoms embedded in diamond show promise for encoding quantum bits (qubits), but the process ...

Making quantum computing scalable

Mar 20, 2009

(PhysOrg.com) -- Quantum information processing is one of the hottest areas of science and technology right now. Making quantum information processing scalable is an important part of the efforts involved with regard to practical ...

Recommended for you

Backpack physics: Smaller hikers carry heavier loads

15 hours ago

Hikers are generally advised that the weight of the packs they carry should correspond to their own size, with smaller individuals carrying lighter loads. Although petite backpackers might appreciate the ...

Extremely high-resolution magnetic resonance imaging

15 hours ago

For the first time, researchers have succeeded to detect a single hydrogen atom using magnetic resonance imaging, which signifies a huge increase in the technology's spatial resolution. In the future, single-atom ...

'Attosecond' science breakthrough

16 hours ago

Scientists from Queen's University Belfast have been involved in a groundbreaking discovery in the area of experimental physics that has implications for understanding how radiotherapy kills cancer cells, among other things.

User comments : 0