Coldness triggers northward flight in migrating monarch butterflies, study shows

Feb 21, 2013
monarch butterfly
Photo by Derek Ramsey. Via Wikipedia.

Each fall millions of monarch butterflies from across the eastern United States begin a southward migration in order to escape the frigid temperatures of their northern boundaries, traveling up to 2,000 miles to an overwintering site in a specific grove of fir trees in central Mexico. Surprisingly, a new study by scientists at the University of Massachusetts Medical School published in Current Biology, suggests that exposure to coldness found in the microenvironment of the monarch's overwintering site triggers their return north every spring. Without this cold exposure, the monarch butterfly would continue flying south.

These findings help explain why transverse such to overwinter at a relatively small region roughly 300 square miles in size atop frost-covered mountains. Upon arrival in November, the monarchs begin to congregate in tightly packed clusters in a few isolated locations in the coniferous forests. Both the clustering and the forest cover provide a microenvironment that protects against environmental extremes – the temperature remains low enough to keep low but not cold enough to cause freezing – and ultimately triggers their return north in the spring.

It also suggests that these delicate creatures may be influenced by and vulnerable to global climate changes, say researchers. "The temperature of the microenvironment at the overwintering sites is a critical component for the completion of the migration cycle," said Steven M. Reppert, MD, professor of neurobiology and senior author of the study. "Without this thermal stimulus, the annual migration cycle would be broken, and we could have lost one of the most intriguing in the world."

Though accomplished in a single calendar year, it takes at least three generations of monarch butterflies to complete a single migratory journey. The monarchs that return to Mexico each year have never been to the overwintering sites before, and have no relatives to follow on their way. The biological and genetic mechanisms underlying their incredible journey have intrigued scientists for generations.

Earlier work by Reppert's group found that monarchs rely on a time-compensated sun compass to direct their navigation south. Their new research shows that those same systems are responsible for guiding them north each spring.

This alone, however, didn't explain what was triggering the change in direction each spring. To find out, Patrick Guerra, a postdoctoral fellow in Reppert's lab at UMass Medical School and first author on the study, collected wild monarchs at the start of their migration in the fall and subjected the monarchs to the same temperature and light levels they would experience in their overwintering ground in Mexico. When the monarchs were studied in a flight simulator 24 days later, instead of resuming their southward journey, the butterflies headed north.

Further study confirmed that changes in temperature alone altered the flight direction of the monarch butterflies. Those subjected to cold oriented north; monarchs who were protected from the cold would continue to orient south.

These findings, coupled with newly available genetic and genomic tools for monarchs, will lead to new insights about the biological processes underlying their remarkable migratory journey.

"The more we learn, the clearer it becomes that the monarch migration is a uniquely fragile biological process," said Reppert. "Understanding how it works means we'll be better able to protect this iconic system from external threats such as global warming."

Explore further: Male monkey filmed caring for dying mate (w/ Video)

More information: dx.doi.org/10.1016/j.cub.2013.01.052

Related Stories

Draft sequence of monarch butterfly genome presented

Nov 23, 2011

Each fall millions of monarch butterflies from across the eastern United States use a time-compensated sun compass to direct their navigation south, traveling up to 2,000 miles to an overwintering site in ...

Mystery of monarch migration takes new turn

May 31, 2012

During the fall, hundreds of millions of monarch butterflies living in eastern North America fly up to 1,500 miles to the volcanic forests of Mexico to spend the winter, while monarchs west of the Rocky Mountains fly to the ...

Recommended for you

Male monkey filmed caring for dying mate (w/ Video)

Apr 18, 2014

(Phys.org) —The incident was captured by Dr Bruna Bezerra and colleagues in the Atlantic Forest in the Northeast of Brazil.  Dr Bezerra is a Research Associate at the University of Bristol and a Professor ...

Orchid named after UC Riverside researcher

Apr 17, 2014

One day about eight years ago, Katia Silvera, a postdoctoral scholar at the University of California, Riverside, and her father were on a field trip in a mountainous area in central Panama when they stumbled ...

In sex-reversed cave insects, females have the penises

Apr 17, 2014

Researchers reporting in the Cell Press journal Current Biology on April 17 have discovered little-known cave insects with rather novel sex lives. The Brazilian insects, which represent four distinct but re ...

Fear of the cuckoo mafia

Apr 17, 2014

If a restaurant owner fails to pay the protection money demanded of him, he can expect his premises to be trashed. Warnings like these are seldom required, however, as fear of the consequences is enough to ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

ScooterG
1 / 5 (2) Feb 21, 2013
Don't fret, you arrogant, ignorant humans. The monarch butterfly is not as fragile as you might think, nor so stupid as to stay in an environment that does not suit its' survival.

For a bunch of people who live and breathe evolution, you warmistas sure don't give earth's critters much credit for their survival abilities.

More news stories

Biologists help solve fungi mysteries

(Phys.org) —A new genetic analysis revealing the previously unknown biodiversity and distribution of thousands of fungi in North America might also reveal a previously underappreciated contributor to climate ...

Making graphene in your kitchen

Graphene has been touted as a wonder material—the world's thinnest substance, but super-strong. Now scientists say it is so easy to make you could produce some in your kitchen.