New classes of magnetoelectric materials promise advances in computing technology

Feb 07, 2013 by Jared Sagoff
An illustration of a titanium-europium oxide cage lattice studied in an experiment on magnetoelectric materials. Credit: Renee Carlson

(Phys.org)—Although scientists have been aware that magnetism and electricity are two sides of the same proverbial coin for almost 150 years, researchers are still trying to find new ways to use a material's electric behavior to influence its magnetic behavior, or vice versa.

Thanks to new research by an international team of researchers led by the U.S. Department of Energy's Argonne National Laboratory, have developed new methods for controlling magnetic order in a particular class of materials known as "magnetoelectrics."

Magnetoelectrics get their name from the fact that their magnetic and electric properties are coupled to each other. Because this physical link potentially allows control of their with an or vice versa, scientists have taken a special interest in magnetoelectric materials.

"Electricity and magnetism are intrinsically coupled – they're the same entity," said Philip Ryan, a physicist at Argonne's Advanced Photon Source. "Our research is designed to accentuate the coupling between the electric and magnetic parameters by subtly altering the structure of the material."

The Argonne-led team focused on the compound EuTiO3 (europium-), which has a simple that suited it especially well to the experiment. The titanium atom sits in the middle of a cage constructed of the europium and . By first compressing the cage through growing a thin film of EuTiO3 on a similar crystal with a smaller and then applying a voltage, the titanium shifts slightly, electrically polarizing the system, and more importantly, changing the magnetic order of the material.

"The europium and the titanium combine to control the two properties," Ryan said. "The position of the titanium influences the electric behavior, while the europium generates the magnetic nature. There's a shared responsibility for the system's coupling behavior."

This new approach to cross-coupling magnetoelectricity could prove a key step toward the development of next-generation memory storage, improved magnetic field sensors, and many other applications long dreamed about. Unfortunately, scientists still have a ways to go to translating these findings into commercial devices.

Potential magnetic and electric memories each have a distinct appeal to researchers. Electric memories – like the kind used into today's electronics – allow computers to write data fast and very efficiently. Magnetic memories are less energy efficient, but are extraordinarily robust.

"The more we learn about magnetoelectrics, the more we open up this space that gives us the best of both worlds," Ryan said.

Because the electric and magnetic parameters in these particular materials are so strongly linked, engineers might also be able to use them in the future to create non-binary memories.

"Instead of having just a '0' or a '1,' you could have a broader range of different values," Ryan said. "A lot of people are looking into what that kind of logic would look like."

A paper based on the research, "Reversible control of magnetic interactions by electric field in a single-phase material," was published in Nature Communications.

Explore further: Physicists advance understanding of transition metal oxides used in electronics

Related Stories

Powerful new way to control magnetism

Aug 23, 2010

A team of scientists at Rutgers University has found a material in which an electric field can control the overall magnetic properties of the material. If the magnetoelectric effect discovered by the Rutgers group can be ...

Magnetic memories manipulated by voltage, not heat

Aug 29, 2011

In their search for smaller, faster information-storage devices, physicists have been exploring ways to encode magnetic data using electric fields. One advantage of this voltage-induced magnet control is that less power is ...

Magnetic vortices with electric sense

Aug 17, 2012

In the field of magnetic materials, a rapidly expanding area of study concerns stable nanometer-scale spin arrangements. Spins are the fundamental magnetic entities in solids, and patterns made of several ...

Recommended for you

Yellowstone's thermal springs—their colors unveiled

Dec 19, 2014

Researchers at Montana State University and Brandenburg University of Applied Sciences in Germany have created a simple mathematical model based on optical measurements that explains the stunning colors of ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.