How cilia get organized: Researchers unlock architectural secrets of ciliary partitioning

Feb 15, 2013 by Lynn Yarris

Just about every cell in your body contains microscopic organelles called cilia. Primary cilia act like antennas, detecting and relaying molecular signals from a cell's external environment. Motile cilia paddle together in a single direction, like oars on a rowboat, either moving a cell along or regulating the flow of fluids around the cell. Properly functioning cilia are critical to good health. For cilia to function properly, however, the hundreds of proteins that comprise them must be appropriately partitioned and compartmentalized. How this process is carried out is largely unknown – but scientists have now taken a significant step towards understanding the process.

A team of Berkeley Lab and UC San Francisco researchers have identified a structure at the base of motile cilia that appears to have all the features required for cilium partitioning and compartmentalization. They have dubbed this structure the "ciliary partitioning system," and it might one day provide a prime target for pharmaceutical ciliopathic therapies.

"This is the first identification or certainly the first isolation of a that could serve as the partitioning system for cilia," says Ken Downing, a biophysicist with Berkeley Lab's Life Sciences Division who led this research. "While many suspected that such a system existed, nobody had found it nor seemed to have much of an idea as to how it might work."

A is essentially a filament made up of a unique organization of microtubules, called an "axoneme," that is sheathed within a membrane and anchored in the cell by another organelle called the "basal body." Using and working with Tetrahymena pyriformis, a hairy teardrop-shaped microbe often used as a in studies of cilia, Downing and his colleagues found a plate-shaped structure at the ciliary base that potentially serves as a cytosolic "ciliary ." Featuring nine pores through which the microtubules pass, this complex forms tunnels for the movement of proteins from the cytoplasm of the cell into the cilia. The researchers also found a detergent-resistant membrane region well-suited to serve as a diffusion barrier, plus a ring complex that connects the ciliary pore complex to the membrane diffusion barrier.

"Our proteomics analyses show involvement of the membrane domain in vesicle trafficking, suggesting that this region plays an active role in membrane transport," Downing says. "The ciliary pore complex and the ring together form a complete partition defining the ciliary boundary."

Downing and his colleagues have published a paper on this research in the journal Current Biology titled "Architectural Insights into a Ciliary Partition." Co-authors were Puey Ounjai, Keunhwan Kim, Haichuan Liu, Ming Dong, Andrew Tauscher and Ewa Witkowska.

Explore further: Researcher among best in protein modeling contests

Related Stories

Researchers identify new role for cilia protein in mitosis

Apr 04, 2011

Researchers at the University of Massachusetts Medical School have described a previously unknown role for the cilia protein IFT88 in mitosis, the process by which a dividing cell separates its chromosomes containing the ...

How cells' sensing hairs are made

Jun 08, 2011

(PhysOrg.com) -- Body cells detect signals that control their behavior through tiny hairs on the cell surface called cilia. Serious diseases and disorders can result when these cilia do not work properly. New research from ...

Recommended for you

Compound from soil microbe inhibits biofilm formation

12 hours ago

Researchers have shown that a known antibiotic and antifungal compound produced by a soil microbe can inhibit another species of microbe from forming biofilms—microbial mats that frequently are medically harmful—without ...

Researcher among best in protein modeling contests

15 hours ago

A Purdue University researcher ranks among the best in the world in bioinformatics competitions to predict protein structure, docking and function, making him a triple threat in the world of protein modeling.

Survey of salmonella species in Staten Island Zoo's snakes

16 hours ago

For humans, Salmonella is always bad news. The bacterial pathogen causes paratyphoid fever, gastroenteritis and typhoid. But for snakes, the bacteria aren't always bad news. Certain species of Salmonella are a natural part ...

A long-standing mystery in membrane traffic solved

Mar 27, 2015

In 2013, James E. Rothman, Randy W. Schekman, and Thomas C. Südhof won the Nobel Prize in Physiology or Medicine for their discoveries of molecular machineries for vesicle trafficking, a major transport ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.