Characterizing noise in the global nuclear weapon monitoring system

Feb 11, 2013

Under the auspices of the Comprehensive Nuclear-Test-Ban Treaty Organization, a worldwide monitoring system designed to detect the illegal testing of nuclear weaponry has been under construction since 1999. The International Monitoring System is composed of a range of sensors, including detectors for hydroacoustic and seismic signals, and when completed, will include 60 infrasound measurement arrays set to detect low-frequency sound waves produced by an atmospheric nuclear detonation.

The monitoring system's effectiveness, however, is limited because of noise from infrasound signals produced by natural sources, such as wind, surf, and thunder, and by anthropogenic activity, such as mining, industrial operations, and flying aircraft. To improve the identification of atmospheric detonations (or any other signal of interest for the global infrasound network), Matoza et al. have devised a method to eliminate irrelevant sensor noise. Unlike previous research, which treated all noise affecting the infrasound sensors equally, they split the noise into two categories: coherent noise, produced by consistent infrasound sources but that is unrelated to the signals of interest, and incoherent noise, infrasound produced by random sources such as wind.

Analyzing the observations of 39 infrasound stations from April 2005 to December 2010, the authors identify consistent sources of coherent noise, including ocean microbaroms, , the sounds of the surf and thunder, and human activity. Identifying the frequencies associated with different sources could improve signal processing, which would in turn improve an infrasound array's ability to isolate the signals it is designed to monitor.

Explore further: Mexico's Volcano of Fire blows huge ash cloud

More information: Coherent ambient infrasound recorded by the International Monitoring System, Geophysical Research Letters, doi: 10.1029/2012GL054329 , 2013 http://onlinelibrary.wiley.com/doi/10.1029/2012GL054329/abstract

add to favorites email to friend print save as pdf

Related Stories

Tropical cyclone waves detected with infrasound sensor array

Jan 15, 2013

The strong winds of a tropical cyclone whip up the sea surface, driving ocean waves a dozen meters (about 40 feet) high. When one such ocean wave runs into another wave that has an equal period but is traveling in the opposite ...

The inaudible symphony analyzed

Nov 03, 2008

By measuring 'inaudible' sounds, events like illegal nuclear tests can be detected. This 'infrasound' can also help us understand more about the upper atmosphere, according to Läslo Evers. Evers will receive a PhD based ...

Recommended for you

Erosion may trigger earthquakes

Nov 21, 2014

Researchers from laboratories at Géosciences Rennes (CNRS/Université de Rennes 1), Géosciences Montpellier (CNRS/Université de Montpellier 2) and Institut de Physique du Globe de Paris (CNRS/IPGP/Université Paris Diderot), ...

Strong undersea earthquake hits eastern Indonesia

Nov 21, 2014

A strong undersea earthquake hit off the coast of eastern Indonesia on Friday, but there were no immediate reports of injuries or serious damage and officials said it was unlikely to trigger a tsunami.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.