Cellular alchemy caught in action

Feb 08, 2013 by Bill Hathaway

One of the most critical biological advances in the past decade was the discovery that the introduction of four simple genetic factors can turn a fully mature adult cell back into an embryonic-like state, a process called reprogramming.

Now, Yale School of Medicine researchers have created a video that shows in great detail how this takes place. The Yale team introduced these into a blood cell and watched as it formed a colony of , which are capable of becoming many different types of cells.

The reprogramming process holds the promise of creating cell-based therapy for a host of serious diseases. However it has been a mystery how and when an individual cell decides to make this drastic change.

"These movies show that the process is more complicated than we thought. Now that we can see how it happens, we have an opportunity to getting to know the cells better, and control their behaviors better," said Shangqin Guo, research scientist at the Yale Stem Cell Center and lead author of the study, published in the journal .

Explore further: Fighting bacteria—with viruses

More information: onlinelibrary.wiley.com/doi/10… 2/stem.1323/suppinfo

add to favorites email to friend print save as pdf

Related Stories

Rethinking reprogramming: A new way to make stem cells

Apr 07, 2011

A paper published by Cell Press in the April 8th issue of the journal Cell Stem Cell reveals a new and more efficient method for reprogramming adult mouse and human cells into an embryonic stem cell-like state and could ...

Not all cellular reprogramming is created equal

Dec 01, 2011

Tweaking the levels of factors used during the reprogramming of adult cells into induced pluriopotent stem (iPS) cells greatly affects the quality of the resulting iPS cells, according to Whitehead Institute researchers.

Major step forward in understanding cell reprogramming

Feb 14, 2008

Harvard Stem Cell Institute (HSCI) and Massachusetts General Hospital (MGH) Researchers have taken a major step toward eventually being able to reprogram adult cells to an embryonic stem cell-like state without the use of ...

Recommended for you

Fighting bacteria—with viruses

Jul 24, 2014

Research published today in PLOS Pathogens reveals how viruses called bacteriophages destroy the bacterium Clostridium difficile (C. diff), which is becoming a serious problem in hospitals and healthcare institutes, due to its re ...

Atomic structure of key muscle component revealed

Jul 24, 2014

Actin is the most abundant protein in the body, and when you look more closely at its fundamental role in life, it's easy to see why. It is the basis of most movement in the body, and all cells and components ...

Brand new technology detects probiotic organisms in food

Jul 23, 2014

In the food industr, ity is very important to ensure the quality and safety of products consumed by the population to improve their properties and reduce foodborne illness. Therefore, a team of Mexican researchers ...

Protein evolution follows a modular principle

Jul 23, 2014

Proteins impart shape and stability to cells, drive metabolic processes and transmit signals. To perform these manifold tasks, they fold into complex three-dimensional shapes. Scientists at the Max Planck ...

Report on viruses looks beyond disease

Jul 22, 2014

In contrast to their negative reputation as disease causing agents, some viruses can perform crucial biological and evolutionary functions that help to shape the world we live in today, according to a new report by the American ...

User comments : 0