When the cell's two genomes collide

Feb 05, 2013
Bright areas surrounding darker oval nuclei denote the location of mitochondria in the stained cells of fruit fly ovaries. Brown and Indiana researchers have traced the genetic and biochemical roots of a disease that arose in flies from an incompatibility between the nuclear and mitochondrial genomes. Credit: Rand lab/Brown University

(Phys.org)—Plant and animal cells contain two genomes: one in the nucleus and one in the mitochondria. When mutations occur in each, they can become incompatible, leading to disease. To increase understanding of such illnesses, scientists at Brown University and Indiana University have traced one example in fruit flies down to the individual errant nucleotides and the mechanism by which the flies become sick.

Diseases from a mutation in one genome are complicated enough, but some illnesses arise from errant interactions between two genomes: the DNA in the and in the mitochondria. Scientists want to know more about how such genomic disconnects cause disease. In a step in that direction, scientists at Brown University and Indiana University have traced one such incompatibility in fruit flies down to the level of individual and describe how the genetic makes the flies sick.

"This has relevance to human disease but it's also relevant to all organisms because these two genomes are in all animals and all plants," said David Rand professor of biology at Brown and senior author of the study published online Jan. 31 in . "There are a lot of that are mitochondrial in origin and they have peculiar genetic tracking—a two-part system needs to be considered."

Five years ago at Brown, Rand and two postdoctoral researchers—Colin Meiklejohn, of Brown and Indiana University, and Kristi Montooth, now an assistant professor at Indiana University—began searching for an example in the convenient of fruit flies. They started mixing and matching mitochondrial and nuclear genomes from different strains and species of flies that carried natural mutations produced during evolution to observe what conflicts might arise. They found that when they placed the "simw 501" mitochondrial DNA from Drosophila simulans flies into Drosophila melanogaster flies with "Oregon R" , bad things happened.

The flies with this combination lived but had an array of problems. Their most noticeable flaw was that whisker-like bristles on their backs were only half the length of those in normal flies. The flies also had developmental delays, reproduced less effectively, and tired more quickly, which makes sense because the mitochondria is the cell's power plant.

Once the team, including lead author Meiklejohn, had a bona fide mitochondrial-nuclear to study, they could then begin looking for exactly where the problem lay and how it was causing disease. In the paper, they describe the genetic and biochemical experiments they conducted to find out.

Brown graduate student Marissa Holmbeck, the paper's second author, measured the productivity of several enzymes in the mitochondria's power generation process. Two enzymes that are derived entirely from ran just as well in the sick flies as in healthy ones, but three enzymes that are jointly managed by mitochondrial and nuclear genes lagged behind in activity.

"The different complexes that are jointly encoded by the mitochondrial and nuclear subunits, those are the ones where we are seeing the defect in activity," Holmbeck said.

Each mutation alone, in fact, does little or no harm to flies. It is only when both are present that the flies fall ill.

Meanwhile, Meiklejohn and Montooth tracked those mutations to just two altered nucleotide letters—one in each genome. In the mitochondrial genome, a G to U mutation in an RNA suggested a problem with protein production inside the mitochondria. This was confirmed when they discovered an A to V mutation in the nuclear protein that adds an amino acid to this same mitochondrial RNA.

The biochemical and genetic evidence pointed to flaws in how fast the of the sick flies could produce proteins needed to promote growth.

"The specifics of this paper are tracking that down to the individual nucleotide," Rand said, "But the more general lesson is that this coevolution of mitochondrial and nuclear genes has been going on for millions of years in millions of organisms and is going on in human populations today."

In human beings, a well-known mitochondrial disease, for example, is an aversion to exercise that is due to a mutation in the same mitochondrial RNA gene the team studied in .

Rand and his group are now conducting new experiments to trace more mito-nuclear incompatibilities within a single species to their genetic and biochemical roots.

"This paper provided proof of principle that we can identify these things and map them to their nucleotides," Rand said. "We want to ask how common is this and can we find other sources of this kind of breakdown in mito-nuclear crosstalk underlying disease."

Explore further: Water 'thermostat' could help engineer drought-resistant crops

More information: The new research, "An Incompatibility Between a Mitochondrial tRNA and Its Nuclear-Encoded tRNA Synthetase Compromises Development and Fitness in Drosophila," was published online Jan. 31 in PLOS Genetics. www.plosgenetics.org/article/i… journal.pgen.1003238

Related Stories

Mothers curse linked to male infertility

May 16, 2011

(Medical Xpress) -- Researchers have discovered the first real evidence of the 'mother's curse' and its connection to male infertility due to genetic mutations in mitochondria. Led by Dr. Damian Dowling from Monash University ...

Vitamin K2: New hope for Parkinson's patients?

May 11, 2012

Neuroscientist Patrik Verstreken, associated with VIB and KU Leuven, succeeded in undoing the effect of one of the genetic defects that leads to Parkinson's using vitamin K2. His discovery gives hope to Parkinson's patients. ...

For mitochondria, bigger may not be better

Aug 23, 2012

Goldilocks was on to something when she preferred everything "just right." Harvard Medical School researchers have found that when it comes to the length of mitochondria, the power-producing organelles, applying the fairy ...

Recommended for you

Biotech firm's GM mosquitoes to fight dengue in Brazil

Aug 27, 2014

It's a dry winter day in southeast Brazil, but a steamy tropical summer reigns inside the labs at Oxitec, where workers are making an unusual product: genetically modified mosquitoes to fight dengue fever.

User comments : 2

Adjust slider to filter visible comments by rank

Display comments: newest first

rkolter
not rated yet Feb 05, 2013
In human beings, a well-known mitochondrial disease, for example, is an aversion to exercise that is due to a mutation in the same mitochondrial RNA gene the team studied in fruit flies.

There is a genetic disease in humans whose primary symptom is an aversion to exercise?
Mandan
not rated yet Feb 05, 2013

There is a genetic disease in humans whose primary symptom is an aversion to exercise?


Since the mitochondrion is the cellular structure which allows for oxygen respiration, it doesn't involve much of a stretch of the imagination to see how some defect in its function would lead to an aversion by the affected organism to anything that increased oxygen requirements.