Researchers discover new cancer target

February 28, 2013

New research published today in the Biochemical Journal describes the discovery of a new cancer target.

PI3K is a name given to a family of enzymes that are involved in cell growth, proliferation, differentiation and many other cellular functions.

These enzymes are also implicated in many cancers and PI3K signalling is a target for treatments.

Now, researchers at Bart's Cancer Institute in London have discovered a previously unrecognized mechanism by which PI3K sustains the proliferation of . It appears that PI3K modulates the concentration of spermidine, a polyamine involved in .

Writing in the , the researchers explain that there are two controlling each other's activities in a kind of feedback loop: that of the enzymes PI3K and ornithine decarboxylase. Restricting the action of both led to a dramatic shrinkage of tumours in xenograft models.

"Our work provides new insights into the intriguing interlink that exists between signalling and and how these synergize in the development of cancers," said Dr Pedro Cutillas, of the Barts Cancer Institute, Queen Mary University of London, and one of the authors. "I hope this study will inspire new avenues in the exploration of cancer therapies that target metabolic and signalling pathways."

To aid in the dissemination of this important discovery, Portland Press Limited has made online access to this paper free for a limited period.

Explore further: Discovery opens door to new treatments for prostate, brain and skin cancers

More information: Rejeeve, V. et al. Polyamine production is downstream and upstream of oncogenic PI3K signalling and contributes to tumour cell growth, Biochemical Journal (2013) 450 619–628. doi:10.1042/BJ20121525

Related Stories

Recommended for you

How to look for a few good catalysts

July 30, 2015

Two key physical phenomena take place at the surfaces of materials: catalysis and wetting. A catalyst enhances the rate of chemical reactions; wetting refers to how liquids spread across a surface.

New polymer able to store energy at higher temperatures

July 30, 2015

(Phys.org)—A team of researchers at the Pennsylvania State University has created a new polymer that is able to store energy at higher temperatures than conventional polymers without breaking down. In their paper published ...

Findings illuminate animal evolution in protein function

July 27, 2015

Virginia Commonwealth University and University of Richmond researchers recently teamed up to explore the inner workings of cells and shed light on the 400–600 million years of evolution between humans and early animals ...

Yarn from slaughterhouse waste

July 29, 2015

ETH researchers have developed a yarn from ordinary gelatine that has good qualities similar to those of merino wool fibers. Now they are working on making the yarn even more water resistant.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.