Researchers invent 'acoustic-assisted' magnetic information storage

Feb 14, 2013

Electrical engineers at Oregon State University have discovered a way to use high- frequency sound waves to enhance the magnetic storage of data, offering a new approach to improve the data storage capabilities of a multitude of electronic devices around the world.

The technology, called acoustic-assisted magnetic recording, has been presented at a professional conference, and a patent application was filed this week.

Magnetic storage of data is one of the most inexpensive and widespread technologies known, found in everything from to the magnetic strip on a credit card. It's permanent, dependable and cheap. However, long-term reliability of stored data becomes an increasing concern as the need grows to pack more and more information in , experts say.

"We're near the peak of what we can do with the technology we now use for ," said Pallavi Dhagat, an associate professor in the OSU School of Electrical Engineering and Computer Science. "There's always a need for approaches that could store even more information in a smaller space, cost less and use less power."

That can be possible, scientists say, if the are temporarily heated, even for an instant, so they can become momentarily less stiff and more data can be stored at a particular spot. This has proven difficult to do, because the heating tends to spread beyond where it is wanted and the technology involves complex integration of optics, electronics and magnetics.

With the new approach, ultrasound is directed at a highly specific location while data is being stored, creating elasticity that literally allows a tiny portion of the material to bend or stretch. It immediately resumes its shape when the stop. The data can be stored reliably without the concerns around heating.

It should also be possible to create a with no moving parts to implement this technology, researchers said. Unlike conventional hard-disk drive storage, solid state memory would offer durability.

These advances were recently reported at the 12th Joint MMM/Intermag Conference in Chicago.

"This technology should allow us to marry the benefits of solid state electronics with , and create non-volatile memory systems that store more data in less space, using less power," said Albrecht Jander, also an associate professor of electrical engineering and collaborator on the research.

This approach might work with materials already being used in magnetic recordings, or variations on them, the investigators said. Continued research will explore performance, materials and cost issues.

Advances in data storage are part of what has enabled the enormous advance in high technology systems in recent decades.

A disk drive at the dawn of this era in the 1950s had five megabyte capacity, cost today's equivalent of $160,000, weighed about a ton, had to be moved with a forklift and was so big it had to be shipped on a large cargo aircraft. Experts at the time said they could have built something with more storage capacity, but they could not envision why anyone would want it, or buy it.

A system today that stores 500 gigabytes, or 100,000 times as much information, is found routinely in laptop computers that cost a few hundred dollars.

Explore further: Seeking 'absolute zero', copper cube gets chillingly close

Related Stories

IBM buys flash memory firm

Aug 16, 2012

IBM on Thursday announced a deal to buy a US firm specializing in high-performance solid state memory, which is fast replacing spinning disks used to store data in computer hard drives.

Creating Denser Magnetic Memory

Jul 07, 2009

(PhysOrg.com) -- One of the issues afflicting magnetic memory is the fact that it is difficult to store information for as long as 10 years. In order to overcome this problem, scientists and engineers have been looking for ...

Recommended for you

Backpack physics: Smaller hikers carry heavier loads

14 hours ago

Hikers are generally advised that the weight of the packs they carry should correspond to their own size, with smaller individuals carrying lighter loads. Although petite backpackers might appreciate the ...

Extremely high-resolution magnetic resonance imaging

14 hours ago

For the first time, researchers have succeeded to detect a single hydrogen atom using magnetic resonance imaging, which signifies a huge increase in the technology's spatial resolution. In the future, single-atom ...

'Attosecond' science breakthrough

15 hours ago

Scientists from Queen's University Belfast have been involved in a groundbreaking discovery in the area of experimental physics that has implications for understanding how radiotherapy kills cancer cells, among other things.

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

h0dges
not rated yet Feb 15, 2013
A system today that stores 500 gigabytes, or 100,000 times as much information, is found routinely in laptop computers that cost a few hundred dollars.


Fifty dollars [1], actually.

[1] http://www.newegg...22149380