Worms hijack development to foster cannibalism, study finds

Jan 04, 2013 by Bridget Rigas
Worms hijack development to foster cannibalism
A wide-mouthed P. pacificus worm preying on a smaller C. elegans worm. Credit: Sommer laboratory

(Phys.org)—Conventional wisdom holds that genes determine the shape and structure (morphology) of animals, but something else may be at play. A new study shows that a roundworm (P. pacificus) regulates its offspring's morphology by using a potent cocktail of small-molecule signals. Exposure to trace quantities of these chemically unusual molecules can turn genetically identical juveniles into very different types of adults.

The study, co-authored by Frank Schroeder of the Boyce Thompson Institute for Plant Research at Cornell and Ralf Sommer of the Max-Planck Institute in Germany, was published in the Dec. 14 issue of , a peer-reviewed journal of the German Chemical Society.

Worms hijack development to foster cannibalism
Electron micrographs of P. pacificus mouth form variants. Left: predacious wide-mouthed form. Right: bacteria-eating narrow-mouthed form. Credit: Sommer laboratory

Schroeder investigated the development of the nematode P. pacificus, which can either have a narrow or a wide, large-toothed mouth. The wide-mouthed form had been shown to be associated with low and facilitates a predacious lifestyle: These worms are well equipped to kill and eat other nematodes.

Schroeder and Sommer showed that under crowded conditions, the worms produce small-molecule signals that trigger development into the wide-mouthed form. These signaling compounds are part of a complex mixture of chemicals that regulates several additional aspects of worm development, including entry into an extremely long-lived and persistent larval stage.

But the developmental properties of these worm-derived chemicals were not the only unexpected findings. "What fascinated us most were the of the compounds we identified—they look like something from a chemistry lab, not like natural products," Schroeder said.

For example, one of the identified signaling molecules is based on an unprecedented type of nucleotide. are crucial components of all as they form the building blocks of RNA and DNA; known variations are based exclusively on the furanose form of the sugar ribose. Schroeder and Sommer showed that P. pacificus produce the previously unknown xylopyranose form of an evolutionarily highly conserved tRNA residue. By combining this xylopyranose-based nucleoside with a lipid-derived side chain and L-paratose, a sugar also not previously found in nature, the worms create a highly potent and specific chemical signal that regulates development of their offspring. By identifying these compounds, the researchers showed that nematodes can combine building blocks from diverse metabolic pathways into complex chemical architectures.

Furthermore, this research suggests that structures of yet unidentified signaling molecules in higher animals, including humans, may deviate significantly from established paradigms, the researchers noted, emphasizing the need for a comprehensive investigation of human signaling molecules and their structures.

Explore further: Microbes provide insights into evolution of human language

Related Stories

'Worm speak' uses chemicals to communicate

Jan 26, 2012

(PhysOrg.com) -- A species of small, transparent roundworms have a highly evolved language in which they combine chemical fragments to create precise molecular messages that control social behavior, reports ...

A worm bites off enough to chew (w/ Video)

Jul 01, 2010

Dramatic scenes are played out under Ralf Sommer's microscope: his research object, the roundworm Pristionchus pacificus, bites another worm, tears open a hole in its side and devours the oozing contents. The sq ...

Recommended for you

Ocean microbes display remarkable genetic diversity

15 hours ago

The smallest, most abundant marine microbe, Prochlorococcus, is a photosynthetic bacteria species essential to the marine ecosystem. An estimated billion billion billion of the single-cell creatures live i ...

Cell resiliency surprises scientists

17 hours ago

New research shows that cells are more resilient in taking care of their DNA than scientists originally thought. Even when missing critical components, cells can adapt and make copies of their DNA in an alternative ...

Cell division speed influences gene architecture

Apr 23, 2014

Speed-reading is a technique used to read quickly. It involves visual searching for clues to meaning and skipping non-essential words and/ or sentences. Similarly to humans, biological systems are sometimes ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

frajo
5 / 5 (1) Jan 04, 2013
the Max-Planck Institute in Germany
is not very meaningful as there are nearly 80 Max-Planck Institutes in Germany. The one meant here is the Max-Planck Institute for Developmental Biology in Tuebingen, Germany.

More news stories

Genetic legacy of rare dwarf trees is widespread

Researchers from Queen Mary University of London have found genetic evidence that one of Britain's native tree species, the dwarf birch found in the Scottish Highlands, was once common in England.

Ocean microbes display remarkable genetic diversity

The smallest, most abundant marine microbe, Prochlorococcus, is a photosynthetic bacteria species essential to the marine ecosystem. An estimated billion billion billion of the single-cell creatures live i ...

Genetic code of the deadly tsetse fly unraveled

Mining the genome of the disease-transmitting tsetse fly, researchers have revealed the genetic adaptions that allow it to have such unique biology and transmit disease to both humans and animals.

Cell resiliency surprises scientists

New research shows that cells are more resilient in taking care of their DNA than scientists originally thought. Even when missing critical components, cells can adapt and make copies of their DNA in an alternative ...

Google+ boss leaving the company

The executive credited with bringing the Google+ social network to life is leaving the Internet colossus after playing a key role there for nearly eight years.