Worm sugarcoats bacterial toxins to stave off death

Jan 30, 2013 by Karen Kindle
Worm sugarcoats bacterial toxins to stave off death
Frank Schroeder's laboratory works on the structural identification of small molecules and their biological functions in nematodes. His group focuses primarily on C. elegans, a harmless, nonparasitic worm used as a model for disease-causing parasitic nematodes.

(Phys.org)—Pathogenic bacteria kill their animal or plant hosts through the production of toxic molecules. But how do animals and plants defend themselves against these toxins? Researchers from the Boyce Thompson Institute for Plant Research (BTI), located at Cornell University, and the University of Florida (UF) have found that the tiny nematode C. elegans chemically disables bacterial toxins: The worms attach a sugar molecule (glucose), which renders toxic bacterial molecules harmless. The paper was published in the Nov. 19 issue of ACS Chemical Biology.

Frank Schroeder (BTI), Arthur Edison (UF) and colleagues examined how C. elegans defends itself against two unrelated bacterial toxins released by P. aeruginosa and E. coli, both of which can kill the worm. They found that C. elegans adds a sugar residue to an in the P. aeruginosa toxin and to the nitrogen in the E. coli toxin. The worms go on to add a phosphate, which results in chemicals far less toxic than the original bacterial compounds.

"Worms employ detoxification mechanisms very similar to those we know from humans, though they likely use a different family of enzymes," Schroeder said. Elucidation of the enzymes the worms use to modify toxins could lead to the development of detoxification inhibitors, which could improve the efficacy of existing drugs for parasitic roundworm infections in humans, livestock and plants.

Schroeder's laboratory works on the structural identification of small molecules and their biological functions in nematodes. His group focuses primarily on C. elegans, a harmless, nonparasitic worm used as a model for disease-causing . In addition, C. elegans research has provided major insights in evolutionarily conserved aspects of human biology; for example, the mechanisms underlying diabetes, aging and neurological diseases.

Explore further: Molecules that came in handy for first life on Earth

add to favorites email to friend print save as pdf

Related Stories

'Worm speak' uses chemicals to communicate

Jan 26, 2012

(PhysOrg.com) -- A species of small, transparent roundworms have a highly evolved language in which they combine chemical fragments to create precise molecular messages that control social behavior, reports ...

Recommended for you

Molecules that came in handy for first life on Earth

3 hours ago

For the first time, chemists have successfully produced amino acid-like molecules that all have the same 'handedness', from simple building blocks and in a single test tube. Could this be how life started. ...

Jumping hurdles in the RNA world

Nov 21, 2014

Astrobiologists have shown that the formation of RNA from prebiotic reactions may not be as problematic as scientists once thought.

New computer model sets new precedent in drug discovery

Nov 18, 2014

A major challenge faced by the pharmaceutical industry has been how to rationally design and select protein molecules to create effective biologic drug therapies while reducing unintended side effects - a challenge that has ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.